aboutsummaryrefslogtreecommitdiffstats
path: root/dvb-t/fi-Yllas
blob: 0488cfb8dc9faf9e916a538b4767a90311ab7024 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
# 2014-04-18 Antti Palosaari <crope@iki.fi>
# generated from http://www.digita.fi/kuluttajat/tv/nakyvyysalueet/kanavanumerot_ja_taajuudet

[Yllas]
	DELIVERY_SYSTEM = DVBT
	FREQUENCY = 546000000
	BANDWIDTH_HZ = 8000000

[Yllas]
	DELIVERY_SYSTEM = DVBT
	FREQUENCY = 594000000
	BANDWIDTH_HZ = 8000000
n192' href='#n192'>192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
#include "stdafx.h"
#include "cphidgetstepper.h"
#include "cusb.h"
#include "csocket.h"
#include "cthread.h"

// === Internal Functions === //

//clearVars - sets all device variables to unknown state
CPHIDGETCLEARVARS(Stepper)
	int i = 0;

	phid->motorSpeedMax = PUNI_DBL;
	phid->motorSpeedMin = PUNI_DBL;
	phid->accelerationMax = PUNI_DBL;
	phid->accelerationMin = PUNI_DBL;
	phid->motorPositionMax = PUNI_INT64;
	phid->motorPositionMin = PUNI_INT64;
	phid->currentMax = PUNI_DBL;
	phid->currentMin = PUNI_DBL;

	for (i = 0; i<STEPPER_MAXINPUTS; i++)
	{
		phid->inputState[i] = PUNI_BOOL;
	}

	for (i = 0; i<STEPPER_MAXSTEPPERS; i++)
	{
		phid->motorSpeedEcho[i] = PUNI_DBL;
		phid->motorPositionEcho[i] = PUNI_INT64;
		phid->motorSensedCurrent[i] = PUNI_DBL;
		phid->motorEngagedStateEcho[i] = PUNI_BOOL;
		phid->motorStoppedState[i] = PUNI_BOOL;
		phid->packetCounterEcho[i] = PUNK_INT;
		
		phid->motorPosition[i] = PUNI_INT64;
		phid->motorPositionReset[i] = PUNK_INT64;
		phid->motorEngagedState[i] = PUNK_BOOL;
		phid->motorAcceleration[i] = PUNK_DBL;
		phid->motorSpeed[i] = PUNK_DBL;
		phid->motorCurrentLimit[i] = PUNK_DBL;
		phid->packetCounter[i] = PUNK_INT;
	}
	return EPHIDGET_OK;
}

//initAfterOpen - sets up the initial state of an object, reading in packets from the device if needed
//				  used during attach initialization - on every attach
CPHIDGETINIT(Stepper)
	int i = 0;

	TESTPTR(phid);

	//Make sure no old writes are still pending
	phid->outputPacketLen = 0;
	
	//Setup max/min values
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_STEPPER_UNIPOLAR_4MOTOR:
			phid->microSteps = 2;
			phid->motorSpeedMax = ((phid->microSteps * 0x100) - 1) * 0.75;
			phid->motorSpeedMin = 0;
			phid->accelerationMax = (250 * (0.75 * 0.75)) * 0x3f;
			phid->accelerationMin = (250 * (0.75 * 0.75));
			phid->motorPositionMax = 0x7FFFFFFFFFLL;
			phid->motorPositionMin = -0x7FFFFFFFFFLL;
			phid->currentMax = PUNK_DBL;
			phid->currentMin = PUNK_DBL;
			break;
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR:
			phid->microSteps = 16;
			phid->motorSpeedMax = 8 * phid->microSteps * 0x100; //0x8000
			phid->motorSpeedMin = 0;
			phid->accelerationMax = 4000 * 0xff;
			phid->accelerationMin = 4000;
			phid->motorPositionMax = 0x7FFFFFFFFFLL;
			phid->motorPositionMin = -0x7FFFFFFFFFLL;
			phid->currentMax = 2.492;
			phid->currentMin = 0.0542;
			break;
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR_M3:
			phid->microSteps = 16;
			//phid->motorSpeedMax = 262144; //8x 1062_1
			phid->motorSpeedMax = 250000; //nice round number
			phid->motorSpeedMin = 0;
			phid->accelerationMax = 10000000;
			phid->accelerationMin = 2;
			phid->motorPositionMax = 1000000000000000LL; // +-1 Quadrillion - enough for 211 years at max speed
			phid->motorPositionMin = -1000000000000000LL;
			phid->currentMax = 4;
			phid->currentMin = 0;
			break;
		default:
			return EPHIDGET_UNEXPECTED;
	}

	//set data arrays to unknown
	for (i = 0; i<phid->phid.attr.stepper.numInputs; i++)
	{
		phid->inputState[i] = PUNK_BOOL;
	}
	for (i = 0; i<phid->phid.attr.stepper.numMotors; i++)
	{
		phid->motorSpeedEcho[i] = PUNK_DBL;
		phid->motorPositionEcho[i] = PUNK_INT64;
		phid->motorSensedCurrent[i] = PUNK_DBL;
		phid->motorEngagedStateEcho[i] = PUNK_BOOL;
		phid->motorStoppedState[i] = PUNK_BOOL;
		phid->packetCounterEcho[i] = PUNK_INT;
		phid->packetCounter[i] = PUNK_INT;
	}

	//read in initial state - only one packet needed
	CPhidget_read((CPhidgetHandle)phid);

	//At this point, we can only recover (maybe) the position, engaged state, set others to unknown
	for (i = 0; i<phid->phid.attr.stepper.numMotors; i++)
	{
		phid->motorPosition[i] = phid->motorPositionEcho[i];
		phid->motorEngagedState[i] = phid->motorEngagedStateEcho[i];
		phid->motorAcceleration[i] = PUNK_DBL;
		phid->motorSpeed[i] = PUNK_DBL;
		phid->motorCurrentLimit[i] = PUNK_DBL;
		phid->packetCounter[i] = phid->packetCounterEcho[i];

		if(phid->motorStoppedState[i] == PUNK_BOOL)
		{
			if(phid->motorSpeedEcho[i] == 0 || phid->motorEngagedStateEcho[i] == PFALSE)
				phid->motorStoppedState[i] = PTRUE;
			else
				phid->motorStoppedState[i] = PFALSE;
		}
	}
	
	return EPHIDGET_OK;
}

//dataInput - parses device packets
CPHIDGETDATA(Stepper)
	int i = 0, j = 0;

	double speed[STEPPER_MAXSTEPPERS], current[STEPPER_MAXSTEPPERS];
	double lastSpeed[STEPPER_MAXSTEPPERS], lastCurrent[STEPPER_MAXSTEPPERS];
	__int64 position[STEPPER_MAXSTEPPERS], lastPosition[STEPPER_MAXSTEPPERS];
	unsigned char input[STEPPER_MAXINPUTS], lastInput[STEPPER_MAXINPUTS];
	unsigned char motorEngaged[STEPPER_MAXSTEPPERS], motorDone[STEPPER_MAXSTEPPERS], justStopped[STEPPER_MAXSTEPPERS];

	if (length < 0) return EPHIDGET_INVALIDARG;
	TESTPTR(phid);
	TESTPTR(buffer);

	ZEROMEM(input, sizeof(input));
	ZEROMEM(lastInput, sizeof(lastInput));

	//Parse device packets - store data locally
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_STEPPER_UNIPOLAR_4MOTOR:
			for (i = 0; i < phid->phid.attr.stepper.numMotors; i++)
			{
				phid->packetCounterEcho[i] = buffer[0+(i*9)] & 0x0F;
				motorEngaged[i] = (buffer[0+(i*9)] & MOTOR_DISABLED_STEPPER) ? PFALSE : PTRUE;
				motorDone[i] = (buffer[0+(i*9)] & MOTOR_DONE_STEPPER) ? PTRUE : PFALSE;

				speed[i] = (double)((signed short)((buffer[1+(i*9)] << 8) | buffer[2+(i*9)]));
				speed[i] = (double)((speed[i] / 511.0) * phid->motorSpeedMax);

				position[i] = ((((__int64)(signed char)buffer[3+(i*9)]) << 40) +
					(((__uint64)buffer[4+(i*9)]) << 32) +
					(((__uint64)buffer[5+(i*9)]) << 24) +
					(((__uint64)buffer[6+(i*9)]) << 16) +
					(((__uint64)buffer[7+(i*9)]) << 8) +
					((__uint64)buffer[8+(i*9)]));

				position[i] -= 0x20; //round
				position[i] >>= 6;

				//current is not returned
				current[i] = PUNK_DBL;
			}
			break;
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR:
			{
				double Vad;
				phid->packetCounterEcho[0] = buffer[0] & 0x0F;
				motorEngaged[0] = (buffer[0] & MOTOR_DISABLED_STEPPER) ? PFALSE : PTRUE;
				motorDone[0] = (buffer[0] & MOTOR_DONE_STEPPER) ? PTRUE : PFALSE;

				speed[0] = (double)((signed short)((buffer[1] << 8) | buffer[2]));
				speed[0] = (double)((speed[i] / 4096.0) * phid->motorSpeedMax);

				position[0] = ((((__int64)(signed char)buffer[3]) << 40) +
					(((__uint64)buffer[4]) << 32) +
					(((__uint64)buffer[5]) << 24) +
					(((__uint64)buffer[6]) << 16) +
					(((__uint64)buffer[7]) << 8) +
					((__uint64)buffer[8]));

				position[0] -= 0x04; //round
				position[0] >>= 3;

				for (i = 0, j=0x01; i<phid->phid.attr.stepper.numInputs; i++, j<<=1)
				{
					if ((buffer[9] & j))
						input[i] = PFALSE;
					else
						input[i] = PTRUE;
				}

				//value is 0-4.16 v in 8 bits 
				//(4.16 = (Vbandgap + 1.6) * 2, min 4.096v, max 4.224v according to bandgap voltage min, max)
				//ie +-1.5% error
				Vad = (((unsigned char)buffer[10] * 4.16 ) / 255.0); // The voltage sensed, to a max of 4.16v
				current[0] = round_double((Vad / (BIPOLAR_STEPPER_CURRENT_SENSE_GAIN * BIPOLAR_STEPPER_CURRENT_LIMIT_Rs)), 3);
			}
			break;
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR_M3:
			{
				phid->packetCounterEcho[0] = buffer[0] & 0x0F;
				motorEngaged[0] = (buffer[0] & MOTOR_DISABLED_STEPPER) ? PFALSE : PTRUE;
				motorDone[0] = (buffer[0] & MOTOR_DONE_STEPPER) ? PTRUE : PFALSE;

				//24.8 floating point format
				speed[0] = (double)( ((signed int)((((signed char)buffer[1]) << 24) | (buffer[2] << 16) | (buffer[3] << 8) | buffer[4])) / 256.0);

				position[0] = ((((__int64)(signed char)buffer[5]) << 56) +
					(((__uint64)buffer[6]) << 48) +
					(((__uint64)buffer[7]) << 40) +
					(((__uint64)buffer[8]) << 32) +
					(((__uint64)buffer[9]) << 24) +
					(((__uint64)buffer[10]) << 16) +
					(((__uint64)buffer[11]) << 8) +
					((__uint64)buffer[12]));
			}
			break;
		default:
			return EPHIDGET_UNEXPECTED;
	}
	
	//Make sure values are within defined range, and store to structure
	for (i = 0; i < phid->phid.attr.stepper.numMotors; i++)
	{
		lastPosition[i] = phid->motorPositionEcho[i];
		lastSpeed[i] = phid->motorSpeedEcho[i];
		lastCurrent[i] = phid->motorSensedCurrent[i];

		if(position[i] > phid->motorPositionMax || position[i] < phid->motorPositionMin)
			phid->motorPositionEcho[i] = PUNK_INT64;
		else
			phid->motorPositionEcho[i] = position[i];

		if(speed[i] > phid->motorSpeedMax || speed[i] < -phid->motorSpeedMax)
			LOG(PHIDGET_LOG_WARNING, "Phidget stepper received out of range speed data: %lE", speed[i]);
		else
			phid->motorSpeedEcho[i] = speed[i];

		phid->motorSensedCurrent[i] = current[i];

		phid->motorEngagedStateEcho[i] = motorEngaged[i];
	}

	for (i = 0; i < phid->phid.attr.stepper.numInputs; i++)
	{
		lastInput[i] = phid->inputState[i];
		phid->inputState[i] = input[i];
	}

	//make sure phid->motorStoppedState isn't updated until the other data is filled in
	CThread_mutex_lock(&phid->phid.writelock);
	for (i = 0; i < phid->phid.attr.stepper.numMotors; i++)
	{
		//if we are up to date, and the motor is done, set stopped to true - this is the only place that this gets set true;
		justStopped[i] = PFALSE;
		if(phid->packetCounter[i] == phid->packetCounterEcho[i] && motorDone[i] == PTRUE
			&& ((phid->motorPositionEcho[i] == phid->motorPosition[i] && phid->motorSpeedEcho[i] == 0) || phid->motorEngagedStateEcho[i] == PFALSE))
		{
			if(phid->motorStoppedState[i] == PFALSE)
				justStopped[i] = PTRUE;
			phid->motorStoppedState[i] = PTRUE;
		}
		else if(motorDone[i] == PFALSE)
			phid->motorStoppedState[i] = PFALSE;
	}
	//LOG(PHIDGET_LOG_VERBOSE, " ECHO: %d %d %d %d",phid->packetCounterEcho[0],phid->packetCounterEcho[1],phid->packetCounterEcho[2],phid->packetCounterEcho[3]);
	CThread_mutex_unlock(&phid->phid.writelock);

	//send out any events for changed data
	for (i = 0; i < phid->phid.attr.stepper.numInputs; i++)
	{
		if(phid->inputState[i] != PUNK_BOOL && phid->inputState[i] != lastInput[i])
			FIRE(InputChange, i, phid->inputState[i]);
	}

	for (i = 0; i < phid->phid.attr.stepper.numMotors; i++)
	{
		if(phid->motorPositionEcho[i] != PUNK_INT64 && phid->motorEngagedStateEcho[i] == PTRUE
			&& (phid->motorPositionEcho[i] != lastPosition[i] || justStopped[i] == PTRUE) )
		{
			FIRE(PositionChange, i, phid->motorPositionEcho[i]);
			FIRE(PositionChange32, i, (int)phid->motorPositionEcho[i]);
		}

		if(phid->motorSpeedEcho[i] != PUNK_DBL && phid->motorSpeedEcho[i] != lastSpeed[i])
			FIRE(VelocityChange, i, phid->motorSpeedEcho[i]);

		if(phid->motorSensedCurrent[i] != PUNK_DBL && phid->motorSensedCurrent[i] != lastCurrent[i])
			FIRE(CurrentChange, i, phid->motorSensedCurrent[i]);
	}

	return EPHIDGET_OK;
}

//eventsAfterOpen - sends out an event for all valid data, used during attach initialization
CPHIDGETINITEVENTS(Stepper)

	for (i = 0; i<phid->phid.attr.stepper.numInputs; i++)
	{
		if(phid->inputState[i] != PUNK_BOOL)
			FIRE(InputChange, i, phid->inputState[i]);
	}
	for (i = 0; i<phid->phid.attr.stepper.numMotors; i++)
	{
		if(phid->motorSensedCurrent[i] != PUNK_DBL)
			FIRE(CurrentChange, i, phid->motorSensedCurrent[i]);
		if(phid->motorSpeedEcho[i] != PUNK_DBL)
			FIRE(VelocityChange, i, phid->motorSpeedEcho[i]);
		if(phid->motorPositionEcho[i] != PUNK_INT64 && phid->motorEngagedStateEcho[i] == PTRUE)
		{
			FIRE(PositionChange, i, phid->motorPositionEcho[i]);
			FIRE(PositionChange32, i, (int)phid->motorPositionEcho[i]);
		}
	}

	return EPHIDGET_OK;
}

//getPacket - used by write thread to get the next packet to send to device
CGETPACKET_BUF(Stepper)

//sendpacket - sends a packet to the device asynchronously, blocking if the 1-packet queue is full
CSENDPACKET_BUF(Stepper)

//makePacket - constructs a packet using current device state
CMAKEPACKETINDEXED(Stepper)
	unsigned char accel = 0, flags = 0;
	unsigned short speed = 0;
	__int64 position = 0;

	int packet_type = Index & 0x30;
	Index = Index & 0x0F;

	TESTPTRS(phid, buffer);

	if(phid->packetCounter[Index] == PUNK_INT)
		phid->packetCounter[Index] = 0;

	phid->packetCounter[Index]++;
	phid->packetCounter[Index] &= 0x0F;
	phid->motorStoppedState[Index] = PFALSE;

	//LOG(PHIDGET_LOG_VERBOSE, " OUT %d: %d",Index, phid->packetCounter[Index]);

	//have to make sure that everything to be sent has some sort of default value if the user hasn't set a value
	if(phid->motorEngagedState[Index] == PUNK_BOOL)
		phid->motorEngagedState[Index] = PFALSE; //note motors are not engaged by default

	if(phid->motorEngagedState[Index] == PFALSE)
		flags |= MOTOR_DISABLED_STEPPER;

	switch(packet_type)
	{
		case STEPPER_POSITION_PACKET:
			break;
		case STEPPER_VEL_ACCEL_PACKET:
			if(phid->motorSpeed[Index] == PUNK_DBL)
				phid->motorSpeed[Index] = phid->motorSpeedMax / 2;
			if(phid->motorAcceleration[Index] == PUNK_DBL)
				phid->motorAcceleration[Index] = phid->accelerationMax / 2; //mid-level acceleration
			break;
		case STEPPER_RESET_PACKET:
			phid->motorPosition[Index] = phid->motorPositionReset[Index];
			break;
		default:
			return EPHIDGET_UNEXPECTED;
	}

	switch(phid->phid.deviceUID)
	{
		case PHIDUID_STEPPER_UNIPOLAR_4MOTOR:
			//2-bit index, 2-bit packet type, 4-bit counter 
			buffer[0] = (Index << 6) | packet_type | phid->packetCounter[Index]; 
			//flags
			buffer[1] = flags; 

			switch(packet_type)
			{
				case STEPPER_POSITION_PACKET:
					position = phid->motorPosition[Index] << 6;
					position += 0x20;

					//48-bit position
					buffer[2] = (unsigned char)(position >> 40);
					buffer[3] = (unsigned char)(position >> 32);
					buffer[4] = (unsigned char)(position >> 24);
					buffer[5] = (unsigned char)(position >> 16);
					buffer[6] = (unsigned char)(position >> 8);
					buffer[7] = (unsigned char)(position);
					break;
				case STEPPER_VEL_ACCEL_PACKET:
					accel = (unsigned char)round((phid->motorAcceleration[Index]/phid->accelerationMax) * 63.0);
					speed = (unsigned short)round((phid->motorSpeed[Index]/phid->motorSpeedMax) * 511.0);

					//6-bit acceleration
					buffer[2] = accel;
					//9-bit speed
					buffer[3] = speed >> 8;
					buffer[4] = speed & 0xFF;
					//not used
					buffer[5] = 0;
					buffer[6] = 0;
					buffer[7] = 0;
					break;
				case STEPPER_RESET_PACKET:
					position = phid->motorPositionReset[Index] << 6;
					position += 0x20;

					//48-bit position
					buffer[2] = (unsigned char)(position >> 40);
					buffer[3] = (unsigned char)(position >> 32);
					buffer[4] = (unsigned char)(position >> 24);
					buffer[5] = (unsigned char)(position >> 16);
					buffer[6] = (unsigned char)(position >> 8);
					buffer[7] = (unsigned char)(position);
					break;
				default:
					return EPHIDGET_UNEXPECTED;
			}
			break;
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR:
			{
				unsigned char currentLimit = 0;
				double Vref;

				//2-bit index, 2-bit packet type, 4-bit counter 
				buffer[0] = (Index << 6) | packet_type | phid->packetCounter[Index]; 
				//flags
				buffer[1] = flags; 

				switch(packet_type)
				{
					case STEPPER_POSITION_PACKET:
						position = phid->motorPosition[Index] << 3;
						position += 0x04;

						//48-bit position
						buffer[2] = (unsigned char)(position >> 40);
						buffer[3] = (unsigned char)(position >> 32);
						buffer[4] = (unsigned char)(position >> 24);
						buffer[5] = (unsigned char)(position >> 16);
						buffer[6] = (unsigned char)(position >> 8);
						buffer[7] = (unsigned char)(position);
						break;
					case STEPPER_VEL_ACCEL_PACKET:
						if(phid->motorCurrentLimit[Index] == PUNK_DBL)
							phid->motorCurrentLimit[Index] = 0.50; //choose 500mA - should at least work for the most part

						accel = (unsigned char)round((phid->motorAcceleration[Index]/phid->accelerationMax) * 255.0);
						speed = (unsigned short)round((phid->motorSpeed[Index]/phid->motorSpeedMax) * 4095.0);

						// highest Vref is 3v (2.5A limit as defined by stepping chip)
						// The 8 is defined by the stepping chip - (ItripMAX = Vref/8Rs)
						Vref = phid->motorCurrentLimit[Index] * 8 * BIPOLAR_STEPPER_CURRENT_LIMIT_Rs;
						// DAC output is 0-63 = 0-4.16v, highest value is 45 (3v)
						// 2.08 = Vbandgap * 1.6
						currentLimit = (unsigned char)round( (((Vref - 2.08)/2.08) * 32) + 31 );

						//8-bit acceleration
						buffer[2] = accel;
						//12-bit speed
						buffer[3] = speed >> 8;
						buffer[4] = speed & 0xFF;
						//6-bit current limit
						buffer[5] = currentLimit;
						//not used
						buffer[6] = 0;
						buffer[7] = 0;
						break;
					case STEPPER_RESET_PACKET:
						position = phid->motorPositionReset[Index] << 3;
						position += 0x04;

						//48-bit position
						buffer[2] = (unsigned char)(position >> 40);
						buffer[3] = (unsigned char)(position >> 32);
						buffer[4] = (unsigned char)(position >> 24);
						buffer[5] = (unsigned char)(position >> 16);
						buffer[6] = (unsigned char)(position >> 8);
						buffer[7] = (unsigned char)(position);
						break;
					default:
						return EPHIDGET_UNEXPECTED;
				}
			}
			break;
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR_M3:
			{
				unsigned char currentLimit = 0;
				int accelInt, velInt;

				//2-bit index, 2-bit packet type, 4-bit counter 
				buffer[0] = (Index << 6) | packet_type | phid->packetCounter[Index]; 
				//flags
				buffer[1] = flags; 

				switch(packet_type)
				{
					case STEPPER_POSITION_PACKET:
						//64-bit position
						buffer[2] = (unsigned char)(phid->motorPosition[Index] >> 56);
						buffer[3] = (unsigned char)(phid->motorPosition[Index] >> 48);
						buffer[4] = (unsigned char)(phid->motorPosition[Index] >> 40);
						buffer[5] = (unsigned char)(phid->motorPosition[Index] >> 32);
						buffer[6] = (unsigned char)(phid->motorPosition[Index] >> 24);
						buffer[7] = (unsigned char)(phid->motorPosition[Index] >> 16);
						buffer[8] = (unsigned char)(phid->motorPosition[Index] >> 8);
						buffer[9] = (unsigned char)(phid->motorPosition[Index]);
						break;
					case STEPPER_VEL_ACCEL_PACKET:
						if(phid->motorCurrentLimit[Index] == PUNK_DBL)
							phid->motorCurrentLimit[Index] = 0.50; //choose 500mA - should at least work for the most part

						accelInt = (int)phid->motorAcceleration[Index];
						velInt = (int)phid->motorSpeed[Index];
						currentLimit = (unsigned char)round((phid->motorCurrentLimit[Index]/phid->currentMax) * 255.0);

						//3-byte acceleration
						buffer[2] = accelInt >> 16;
						buffer[3] = accelInt >> 8;
						buffer[4] = accelInt;

						//3-byte velocity
						buffer[5] = velInt >> 16;
						buffer[6] = velInt >> 8;
						buffer[7] = velInt;

						//8-bit current limit
						buffer[8] = currentLimit;

						//not used
						buffer[9] = 0;
						break;
					case STEPPER_RESET_PACKET:
						//64-bit position
						buffer[2] = (unsigned char)(phid->motorPositionReset[Index] >> 56);
						buffer[3] = (unsigned char)(phid->motorPositionReset[Index] >> 48);
						buffer[4] = (unsigned char)(phid->motorPositionReset[Index] >> 40);
						buffer[5] = (unsigned char)(phid->motorPositionReset[Index] >> 32);
						buffer[6] = (unsigned char)(phid->motorPositionReset[Index] >> 24);
						buffer[7] = (unsigned char)(phid->motorPositionReset[Index] >> 16);
						buffer[8] = (unsigned char)(phid->motorPositionReset[Index] >> 8);
						buffer[9] = (unsigned char)(phid->motorPositionReset[Index]);
						break;
					default:
						return EPHIDGET_UNEXPECTED;
				}
			}
			break;
		default:
			return EPHIDGET_UNEXPECTED;
	}

	return EPHIDGET_OK;
}

// === Exported Functions === //

//create and initialize a device structure
CCREATE(Stepper, PHIDCLASS_STEPPER)

//event setup functions
CFHANDLE(Stepper, InputChange, int, int)
CFHANDLE(Stepper, PositionChange, int, __int64)
CFHANDLE(Stepper, PositionChange32, int, int)
CFHANDLE(Stepper, VelocityChange, int, double)
CFHANDLE(Stepper, CurrentChange, int, double)

CGET(Stepper,InputCount,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED

	MASGN(phid.attr.stepper.numInputs)
}

CGETINDEX(Stepper,InputState,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numInputs)
	TESTMASGN(inputState[Index], PUNK_BOOL)

	MASGN(inputState[Index])
}

CGET(Stepper,MotorCount,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED

	MASGN(phid.attr.stepper.numMotors)
}
CGETINDEX(Stepper,Acceleration,double)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorAcceleration[Index], PUNK_DBL)

	MASGN(motorAcceleration[Index])
}
CSETINDEX(Stepper,Acceleration,double)
	TESTPTR(phid) 
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTRANGE(phid->accelerationMin, phid->accelerationMax)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(Acceleration, "%lE", motorAcceleration);
	else
		SENDPACKETINDEXED(Stepper, motorAcceleration[Index], Index + STEPPER_VEL_ACCEL_PACKET);

	return EPHIDGET_OK;
}

CGETINDEX(Stepper,AccelerationMax,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(accelerationMax, PUNK_DBL)

	MASGN(accelerationMax)
}

CGETINDEX(Stepper,AccelerationMin,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(accelerationMin, PUNK_DBL)

	MASGN(accelerationMin)
}

CGETINDEX(Stepper,Velocity,double)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorSpeedEcho[Index], PUNK_DBL)

	MASGN(motorSpeedEcho[Index])
}

CGETINDEX(Stepper,VelocityLimit,double)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorSpeed[Index], PUNK_DBL)

	MASGN(motorSpeed[Index])
}
CSETINDEX(Stepper,VelocityLimit,double)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTRANGE(phid->motorSpeedMin, phid->motorSpeedMax)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(VelocityLimit, "%lE", motorSpeed);
	else
		SENDPACKETINDEXED(Stepper, motorSpeed[Index], Index + STEPPER_VEL_ACCEL_PACKET);

	return EPHIDGET_OK;
}

CGETINDEX(Stepper,VelocityMax,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorSpeedMax, PUNK_DBL)

	MASGN(motorSpeedMax)
}

CGETINDEX(Stepper,VelocityMin,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorSpeedMin, PUNK_DBL)

	MASGN(motorSpeedMin)
}

CGETINDEX(Stepper,TargetPosition,__int64)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorPosition[Index], PUNK_INT64)

	MASGN(motorPosition[Index])
}
CSETINDEX(Stepper,TargetPosition,__int64)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTRANGE(phid->motorPositionMin, phid->motorPositionMax)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(TargetPosition, "%lld", motorPosition);
	else
		SENDPACKETINDEXED(Stepper, motorPosition[Index], Index + STEPPER_POSITION_PACKET);

	return EPHIDGET_OK;
}

CGETINDEX(Stepper,CurrentPosition,__int64)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorPositionEcho[Index], PUNK_INT64)

	MASGN(motorPositionEcho[Index])
}
CSETINDEX(Stepper,CurrentPosition,__int64)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTRANGE(phid->motorPositionMin, phid->motorPositionMax)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(CurrentPosition, "%lld", motorPositionReset);
	else
		SENDPACKETINDEXED(Stepper, motorPositionReset[Index], Index + STEPPER_RESET_PACKET);

	return EPHIDGET_OK;
}

CGETINDEX(Stepper,PositionMax,__int64)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorPositionMax, PUNK_INT64)

	MASGN(motorPositionMax)
}

CGETINDEX(Stepper,PositionMin,__int64)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorPositionMin, PUNK_INT64)

	MASGN(motorPositionMin)
}
CGETINDEX(Stepper,TargetPosition32,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorPosition[Index], PUNK_INT)

	*pVal = (int)phid->motorPosition[Index]; return EPHIDGET_OK;
}
CSETINDEX(Stepper,TargetPosition32,int)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTRANGE(phid->motorPositionMin, phid->motorPositionMax)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(TargetPosition, "%d", motorPosition);
	else
		SENDPACKETINDEXED(Stepper, motorPosition[Index], Index + STEPPER_POSITION_PACKET);

	return EPHIDGET_OK;
}

CGETINDEX(Stepper,CurrentPosition32,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorPositionEcho[Index], PUNK_INT)

	*pVal = (int)phid->motorPositionEcho[Index]; return EPHIDGET_OK;
}
CSETINDEX(Stepper,CurrentPosition32,int)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTRANGE(phid->motorPositionMin, phid->motorPositionMax)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(CurrentPosition, "%d", motorPositionReset);
	else
		SENDPACKETINDEXED(Stepper, motorPositionReset[Index], Index + STEPPER_RESET_PACKET);

	return EPHIDGET_OK;
}

CGETINDEX(Stepper,PositionMax32,int)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)

	*pVal = -(PUNK_INT-1); return EPHIDGET_OK;
}

CGETINDEX(Stepper,PositionMin32,int)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)

	*pVal = (PUNK_INT-1); return EPHIDGET_OK;
}

CGETINDEX(Stepper,Current,double)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED

	//only the original bipolar has current sense
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR:
			TESTINDEX(phid.attr.stepper.numMotors)
			TESTMASGN(motorSensedCurrent[Index], PUNK_DBL)
			MASGN(motorSensedCurrent[Index])
			break;
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR_M3:
		case PHIDUID_STEPPER_UNIPOLAR_4MOTOR:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CGETINDEX(Stepper,CurrentLimit,double)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED

	//only the bipolar has currentLimit
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR:
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR_M3:
			TESTINDEX(phid.attr.stepper.numMotors)
			TESTMASGN(motorCurrentLimit[Index], PUNK_DBL)
			MASGN(motorCurrentLimit[Index])
			break;
		case PHIDUID_STEPPER_UNIPOLAR_4MOTOR:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}
CSETINDEX(Stepper,CurrentLimit,double)
	TESTPTR(phid)
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED

	//only the bipolar has currentLimit
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR:
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR_M3:
			TESTINDEX(phid.attr.stepper.numMotors)
			TESTRANGE(phid->currentMin, phid->currentMax)
			if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
				ADDNETWORKKEYINDEXED(CurrentLimit, "%lE", motorCurrentLimit);
			else
				SENDPACKETINDEXED(Stepper, motorCurrentLimit[Index], Index + STEPPER_VEL_ACCEL_PACKET);
			break;
		case PHIDUID_STEPPER_UNIPOLAR_4MOTOR:
		default:
			return EPHIDGET_UNSUPPORTED;
	}

	return EPHIDGET_OK;
}

CGETINDEX(Stepper,CurrentMax,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED

	//only the bipolar has current
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR:
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR_M3:
			TESTINDEX(phid.attr.stepper.numMotors)
				TESTMASGN(currentMax, PUNK_DBL)
				MASGN(currentMax)
			break;
		case PHIDUID_STEPPER_UNIPOLAR_4MOTOR:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CGETINDEX(Stepper,CurrentMin,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED

	//only the bipolar has current
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR:
		case PHIDUID_STEPPER_BIPOLAR_1MOTOR_M3:
			TESTINDEX(phid.attr.stepper.numMotors)
				TESTMASGN(currentMin, PUNK_DBL)
				MASGN(currentMin)
			break;
		case PHIDUID_STEPPER_UNIPOLAR_4MOTOR:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CGETINDEX(Stepper,Engaged,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorEngagedStateEcho[Index], PUNK_BOOL)

	MASGN(motorEngagedStateEcho[Index])
}
CSETINDEX(Stepper,Engaged,int)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTRANGE(PFALSE, PTRUE)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(Engaged, "%d", motorEngagedState);
	else
		//hang off the STEPPER_VEL_ACCEL_PACKET because this will have the side effect of also setting these two states
		SENDPACKETINDEXED(Stepper, motorEngagedState[Index], Index + STEPPER_VEL_ACCEL_PACKET);

	return EPHIDGET_OK;
}

CGETINDEX(Stepper,Stopped,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_STEPPER)
	TESTATTACHED
	TESTINDEX(phid.attr.stepper.numMotors)
	TESTMASGN(motorStoppedState[Index], PUNK_BOOL)

	MASGN(motorStoppedState[Index])
}