aboutsummaryrefslogtreecommitdiffstats
path: root/cphidgetled.c
blob: 5c7bfd5ddeb7c16c42f6245bdc060ff8ca670b5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
#include "stdafx.h"
#include "cphidgetled.h"
#include "cusb.h"
#include "csocket.h"
#include "cthread.h"

// === Internal Functions === //

//clearVars - sets all device variables to unknown state
CPHIDGETCLEARVARS(LED)
	int i = 0;

	phid->changeRequests=PUNK_BOOL;

	for(i=0;i<LED_MAXLEDS;i++)
	{
		phid->changedLED_Power[i] = PUNK_BOOL;
		phid->LED_Power[i] = PUNI_DBL;
		phid->LED_CurrentLimit[i] = PUNI_DBL;
		phid->nextLED_Power[i] = PUNK_DBL;

		phid->LED_PowerEcho[i] = PUNK_DBL;
		phid->outputEnabledEcho[i] = PUNK_BOOL;
		phid->ledOpenDetectEcho[i] = PUNK_BOOL;

		phid->lastLED_Power[i] = PUNK_DBL;
	}
	phid->voltage = PHIDGET_LED_VOLTAGE_2_75V;
	phid->currentLimit = PHIDGET_LED_CURRENT_LIMIT_20mA;
	phid->faultEcho = PUNK_BOOL;
	phid->TSDCount=0;
	phid->PGoodErrState = PFALSE;
	phid->powerGoodEcho = PUNK_BOOL;
	phid->outputEnableEcho = PUNK_BOOL;
	phid->currentLimitEcho = -1;
	phid->voltageEcho = -1;

	return EPHIDGET_OK;
}

//initAfterOpen - sets up the initial state of an object, reading in packets from the device if needed
//				  used during attach initialization - on every attach
CPHIDGETINIT(LED)
	int i = 0;

	TESTPTR(phid);

	//set data arrays to unknown
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_LED_64:
			for(i=0;i<phid->phid.attr.led.numLEDs;i++)
			{
				phid->changedLED_Power[i] = PFALSE;
				phid->LED_Power[i] = PUNK_DBL;
				phid->nextLED_Power[i] = PUNK_DBL;
			}
			break;
		case PHIDUID_LED_64_ADV:
		case PHIDUID_LED_64_ADV_M3:
			for(i=0;i<phid->phid.attr.led.numLEDs;i++)
			{
				phid->changedLED_Power[i] = PFALSE;
				phid->LED_Power[i] = PUNK_DBL;
				phid->LED_CurrentLimit[i] = PUNK_DBL;
				phid->nextLED_Power[i] = PUNK_DBL;
				
				phid->LED_PowerEcho[i] = PUNK_DBL;
				phid->outputEnabledEcho[i] = PUNK_BOOL;
				phid->ledOpenDetectEcho[i] = PUNK_BOOL;

				phid->lastLED_Power[i] = PUNK_DBL;
			}
			phid->voltage = PHIDGET_LED_VOLTAGE_2_75V;
			phid->currentLimit = PHIDGET_LED_CURRENT_LIMIT_20mA;

			phid->faultEcho = PUNK_BOOL;
			phid->powerGoodEcho = PUNK_BOOL;
			phid->PGoodErrState = PFALSE;
			phid->outputEnableEcho = PUNK_BOOL;
			phid->voltageEcho = -1;
			phid->currentLimitEcho = -1;

			phid->TSDCount=0;
			phid->TSDClearCount = 0;
			phid->lastOutputPacket = 0;
			break;
		default:
			return EPHIDGET_UNEXPECTED;
	}
	phid->changeRequests=0;
	phid->controlPacketWaiting = PFALSE;
	
	//issue a read - fill in data
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_LED_64_ADV:
		case PHIDUID_LED_64_ADV_M3:
			//need two reads to get the full state
			CPhidget_read((CPhidgetHandle)phid);
			CPhidget_read((CPhidgetHandle)phid);
			for(i=0;i<phid->phid.attr.led.numLEDs;i++)
			{
				if(phid->outputEnabledEcho[i] == PTRUE)
					phid->LED_Power[i] = phid->LED_PowerEcho[i];
				else
					phid->LED_Power[i] = 0;
				
				phid->lastLED_Power[i] = phid->LED_PowerEcho[i];
			}
			if(phid->voltageEcho != -1)
				phid->voltage = phid->voltageEcho;
			if(phid->currentLimitEcho != -1)
				phid->currentLimit = phid->currentLimitEcho;
			break;
		case PHIDUID_LED_64:
		default:
			break;
	}

	return EPHIDGET_OK;
}

//dataInput - parses device packets
CPHIDGETDATA(LED)
	int i = 0;
	char error_buffer[50];

	if (length < 0) return EPHIDGET_INVALIDARG;
	TESTPTR(phid);
	TESTPTR(buffer);

	switch(phid->phid.deviceUID)
	{
		case PHIDUID_LED_64_ADV:
			if ((phid->phid.deviceVersion >= 100) && (phid->phid.deviceVersion < 200))
			{
				switch(buffer[0] & 0x80)
				{
					case LED64_IN_LOW_PACKET:
						//PowerGood
						if(buffer[0] & LED64_PGOOD_FLAG)
						{
							phid->PGoodErrState = PFALSE;
							phid->powerGoodEcho = PTRUE;
						}
						else
						{
							phid->powerGoodEcho = PFALSE;
						}

						//all outputs enabled (power on/off)
						if(buffer[0] & LED64_OE_FLAG)
							phid->outputEnableEcho = PTRUE;
						else
							phid->outputEnableEcho = PFALSE;

						//fault
						if(buffer[0] & LED64_FAULT_FLAG)
							phid->faultEcho = PTRUE;
						else
							phid->faultEcho = PFALSE;

						//current limit
						if(buffer[0] & LED64_CURSELA_FLAG)
						{
							if(buffer[0] & LED64_CURSELB_FLAG)
								phid->currentLimitEcho = PHIDGET_LED_CURRENT_LIMIT_80mA;
							else
								phid->currentLimitEcho = PHIDGET_LED_CURRENT_LIMIT_40mA;
						}
						else if (buffer[0] & LED64_CURSELB_FLAG)
							phid->currentLimitEcho = PHIDGET_LED_CURRENT_LIMIT_60mA;
						else
							phid->currentLimitEcho = PHIDGET_LED_CURRENT_LIMIT_20mA;
						
						//voltage
						if(buffer[0] & LED64_PWRSELA_FLAG)
						{
							if(buffer[0] & LED64_PWRSELB_FLAG)
								phid->voltageEcho = PHIDGET_LED_VOLTAGE_5_0V;
							else
								phid->voltageEcho = PHIDGET_LED_VOLTAGE_2_75V;
						}
						else if (buffer[0] & LED64_PWRSELB_FLAG)
							phid->voltageEcho = PHIDGET_LED_VOLTAGE_3_9V;
						else
							phid->voltageEcho = PHIDGET_LED_VOLTAGE_1_7V;

						for(i=0;i<phid->phid.attr.led.numLEDs;i++)
						{
							phid->outputEnabledEcho[i] = (buffer[(i/8)+1] & (1 << (i%8))) ? 1 : 0;
							phid->ledOpenDetectEcho[i] = (buffer[(i/8)+9] & (1 << (i%8))) ? 1 : 0;
						}

						//1st 24 LED powers
						for(i=0;i<24;i++)
						{
							double ledPowerTemp;
							ledPowerTemp = ((double)buffer[i+17] / 127.0) * 100.0;
							phid->LED_PowerEcho[i] = ledPowerTemp;
						}

						//We can guess that the fault is a TSD if there is no LOD
						if(phid->faultEcho)
						{
							phid->TSDCount++;
							phid->TSDClearCount = 30; //500ms of no faults before we clear it

							for(i=0;i<phid->phid.attr.led.numLEDs;i++)
							{
								if(phid->ledOpenDetectEcho[i])
									phid->TSDCount = 0;
							}

							//send out some error events on faults
							//TODO: we could also send LED Open Detect?

							//we have counted three fault flags with no LODs - TSD - only one error event is thrown until this is cleared
							//less then 3 counts, and it could be a false positive
							//if outputs are not enabled then the fault should be guaranteed as a TSD
							if(phid->TSDCount == 3 || (phid->TSDCount < 3 && phid->outputEnableEcho == PFALSE))
							{
								phid->TSDCount = 3;
								FIRE_ERROR(EEPHIDGET_OVERTEMP, "Thermal Shutdown detected.");
							}
						}
						else
						{
							if(phid->TSDClearCount > 0)
								phid->TSDClearCount--;
							else
								phid->TSDCount=0;
						}
						
						if(!phid->powerGoodEcho && phid->PGoodErrState == PFALSE)
						{
							phid->PGoodErrState = PTRUE;
							FIRE_ERROR(EEPHIDGET_BADPOWER, "Bad power supply detected.");
						}

						break;
					case LED64_IN_HIGH_PACKET:
						
						//last 40 LED powers
						for(i=24;i<phid->phid.attr.led.numLEDs;i++)
						{
							double ledPowerTemp;
							ledPowerTemp = ((double)buffer[i-23] / 127.0) * 100.0;
							phid->LED_PowerEcho[i] = ledPowerTemp;
						}

						break;
				}
			}
			else
				return EPHIDGET_UNEXPECTED;
			break;
		case PHIDUID_LED_64_ADV_M3:
			break;
		case PHIDUID_LED_64:
		default:
			return EPHIDGET_UNEXPECTED;
	}

	return EPHIDGET_OK;
}

//eventsAfterOpen - sends out an event for all valid data, used during attach initialization - not used
CPHIDGETINITEVENTS(LED)
	phid = 0;
	return EPHIDGET_OK;
}

//getPacket - used by write thread to get the next packet to send to device
CGETPACKET(LED)
	int i = 0;
	int numLeds = 0;

	CPhidgetLEDHandle phid = (CPhidgetLEDHandle)phidG;

	TESTPTRS(phid, buf)
	TESTPTR(lenp)

	if (*lenp < phid->phid.outputReportByteLength)
		return EPHIDGET_INVALIDARG;

	CThread_mutex_lock(&phid->phid.outputLock);
	
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_LED_64:
			//construct the packet, with up to 4 LED sets
			for (i = 0; i < phid->phid.attr.led.numLEDs; i++)
			{
				if (phid->changedLED_Power[i] && numLeds < 4) {
					phid->LED_Power[i] = phid->nextLED_Power[i];
					phid->changedLED_Power[i] = PFALSE;
					phid->nextLED_Power[i] = PUNK_DBL;
					buf[numLeds*2] = i;
					//0-100 -> 0-63
					buf[numLeds*2+1] = (unsigned char)round((phid->LED_Power[i] / 100.0) * 63.0);
					numLeds++;
					phid->changeRequests--;
				}
			}

			//fill up any remaining buffer space with valid data - sending 0's will mess things up
			for(numLeds=numLeds;numLeds<4;numLeds++)
			{
				buf[numLeds*2] = buf[(numLeds-1)*2];
				buf[numLeds*2+1] = buf[(numLeds-1)*2+1];
			}
			break;
		case PHIDUID_LED_64_ADV:
			//control packet
			if(phid->controlPacketWaiting)
			{

				buf[0] = LED64_CONTROL_PACKET;

				buf[1] = 0;

				switch(phid->currentLimit)
				{
					case PHIDGET_LED_CURRENT_LIMIT_20mA:
						break;
					case PHIDGET_LED_CURRENT_LIMIT_40mA:
						buf[1] |= LED64_CURSELA_FLAG;
						break;
					case PHIDGET_LED_CURRENT_LIMIT_60mA:
						buf[1] |= LED64_CURSELB_FLAG;
						break;
					case PHIDGET_LED_CURRENT_LIMIT_80mA:
						buf[1] |= (LED64_CURSELA_FLAG | LED64_CURSELB_FLAG);
						break;
				}
				
				switch(phid->voltage)
				{
					case PHIDGET_LED_VOLTAGE_1_7V:
						break;
					case PHIDGET_LED_VOLTAGE_2_75V:
						buf[1] |= LED64_PWRSELA_FLAG;
						break;
					case PHIDGET_LED_VOLTAGE_3_9V:
						buf[1] |= LED64_PWRSELB_FLAG;
						break;
					case PHIDGET_LED_VOLTAGE_5_0V:
						buf[1] |= (LED64_PWRSELA_FLAG | LED64_PWRSELB_FLAG);
						break;
				}

				phid->controlPacketWaiting = PFALSE;
			}
			//LED packet
			else
			{
				int bright_packet = PFALSE;
				int output_upper = PFALSE;
				int output_lower = PFALSE;
				//decide if we need to use a normal brightness packet, or if we can use a high efficiency output packet
				for (i = 0; i < phid->phid.attr.led.numLEDs; i++)
				{
					if(phid->changedLED_Power[i])
					{
						if((phid->nextLED_Power[i] != phid->lastLED_Power[i]) && phid->nextLED_Power[i] != 0)
							bright_packet = PTRUE;
						else
						{
							if(i<32)
								output_lower = PTRUE;
							else
								output_upper = PTRUE;
						}
					}
				}

				//only sends brightness changes - not changes between 0 and a brightness
				if(bright_packet)
					{
					//construct the packet, with up to 4 LED sets
					for (i = 0; i < phid->phid.attr.led.numLEDs; i++)
					{
						if (phid->changedLED_Power[i] && numLeds < 4 && phid->nextLED_Power[i] != 0) {
							phid->LED_Power[i] = phid->nextLED_Power[i];
							phid->lastLED_Power[i] = phid->nextLED_Power[i];
							phid->changedLED_Power[i] = PFALSE;
							phid->nextLED_Power[i] = PUNK_DBL;
							buf[numLeds*2] = i;
							//0-100 -> 0-127
							buf[numLeds*2+1] = (unsigned char)round((phid->LED_Power[i] / 100.0) * 127.0);
							if(buf[numLeds*2+1])
								buf[numLeds*2+1] |= 0x80; //this turns the LED on when set brightness > 0;
							numLeds++;
							phid->changeRequests--;
						}
					}

					//fill up any remaining buffer space with valid data - sending 0's will mess things up
					//this just replicates data - doesn't send anything
					for(numLeds=numLeds;numLeds<4;numLeds++)
					{
						buf[numLeds*2] = buf[(numLeds-1)*2];
						buf[numLeds*2+1] = buf[(numLeds-1)*2+1];
					}
				}
				else
				{
					//send lower packet
					if((phid->lastOutputPacket == 0 && output_lower) || (phid->lastOutputPacket != 0 && !output_upper))
					{
						buf[0] = LED64_OUTLOW_PACKET;
						for(i = 0;i<32;i++)
						{
							if(phid->changedLED_Power[i])
							{
								phid->changeRequests--;
								phid->LED_Power[i] = phid->nextLED_Power[i];
								phid->changedLED_Power[i] = PFALSE;
								phid->nextLED_Power[i] = PUNK_DBL;
							}
							if(phid->LED_Power[i] > 0)
								buf[i/8 + 1] |= (1 << (i%8));
						}
						phid->lastOutputPacket = 1;
					}
					//send upper packet
					else
					{
						buf[0] = LED64_OUTHIGH_PACKET;
						for(i = 32;i<64;i++)
						{
							if(phid->changedLED_Power[i])
							{
								phid->changeRequests--;
								phid->LED_Power[i] = phid->nextLED_Power[i];
								phid->changedLED_Power[i] = PFALSE;
								phid->nextLED_Power[i] = PUNK_DBL;
							}
							if(phid->LED_Power[i] > 0)
								buf[i/8 - 3] |= (1 << (i%8));
						}
						phid->lastOutputPacket = 0;
					}
				}
			}
			break;
		case PHIDUID_LED_64_ADV_M3:
			//control packet
			if(phid->controlPacketWaiting)
			{
				buf[0] = LED64_M3_CONTROL_PACKET;

				//TODO: we're getting rid of this probably
				switch(phid->currentLimit)
				{
					case PHIDGET_LED_CURRENT_LIMIT_20mA:
						break;
					case PHIDGET_LED_CURRENT_LIMIT_40mA:
						buf[0] |= LED64_CURSELA_FLAG;
						break;
					case PHIDGET_LED_CURRENT_LIMIT_60mA:
						buf[0] |= LED64_CURSELB_FLAG;
						break;
					case PHIDGET_LED_CURRENT_LIMIT_80mA:
						buf[0] |= (LED64_CURSELA_FLAG | LED64_CURSELB_FLAG);
						break;
				}
				
				switch(phid->voltage)
				{
					case PHIDGET_LED_VOLTAGE_1_7V:
						break;
					case PHIDGET_LED_VOLTAGE_2_75V:
						buf[0] |= LED64_PWRSELA_FLAG;
						break;
					case PHIDGET_LED_VOLTAGE_3_9V:
						buf[0] |= LED64_PWRSELB_FLAG;
						break;
					case PHIDGET_LED_VOLTAGE_5_0V:
						buf[0] |= (LED64_PWRSELA_FLAG | LED64_PWRSELB_FLAG);
						break;
				}

				for(i=0;i<64;i++)
				{
					int value;
					int bufIndex = (i*6)/8 + 1;

					//Default is 20 mA
					if(phid->LED_CurrentLimit[i] == PUNK_DBL)
						phid->LED_CurrentLimit[i] = 20;
					value = round((phid->LED_CurrentLimit[i] / LED64_M3_CURRENTLIMIT) * 63.0);

					switch(i%4)
					{
						case 0:
							buf[bufIndex] |= (value & 0x3F);
							break;
						case 1:
							buf[bufIndex] |= ((value << 6) & 0xC0);
							buf[bufIndex+1] |= ((value >> 2) & 0x0F);
							break;
						case 2:
							buf[bufIndex] |= ((value << 4) & 0xF0);
							buf[bufIndex+1] |= ((value >> 4) & 0x03);
							break;
						case 3:
							buf[bufIndex] |= ((value << 2) & 0xFC);
							break;
					}
				}

				phid->controlPacketWaiting = PFALSE;
			}
			//LED packet
			else
			{				
				int output_upper = PFALSE;
				int output_lower = PFALSE;
				int startIndex;

				for (i = 0; i < phid->phid.attr.led.numLEDs; i++)
				{
					if(phid->changedLED_Power[i])
					{
						if(i<32)
							output_lower = PTRUE;
						else
							output_upper = PTRUE;
					}
				}

				//send lower packet
				if((phid->lastOutputPacket == 0 && output_lower) || (phid->lastOutputPacket != 0 && !output_upper))
				{
					buf[0] = LED64_M3_OUT_LOW_PACKET;
					startIndex=0;
					phid->lastOutputPacket = 1;
				}
				//send upper packet
				else
				{
					buf[0] = LED64_M3_OUT_HIGH_PACKET;
					startIndex=32;
					phid->lastOutputPacket = 0;
				}

				for(i = startIndex;i<startIndex+32;i++)
				{
					int value;
					int bufIndex = (i*12)/8 + 1;

					if(phid->changedLED_Power[i])
					{
						phid->changeRequests--;
						phid->LED_Power[i] = phid->nextLED_Power[i];
						phid->changedLED_Power[i] = PFALSE;
						phid->nextLED_Power[i] = PUNK_DBL;
					}

					//Default is 0 %
					if(phid->LED_Power[i] == PUNK_DBL)
						phid->LED_Power[i] = 0;
					value = round((phid->LED_Power[i] / 100.0) * 4095.0);

					if(i%2 == 0)
					{
						buf[bufIndex] |= (value & 0xFF);
						buf[bufIndex+1] |= ((value >> 8) & 0x0F);
					}
					else
					{
						buf[bufIndex] |= ((value << 4) & 0xF0);
						buf[bufIndex+1] |= ((value >> 4) & 0xFF);
					}
				}
			}
			break;
		default:
			return EPHIDGET_UNEXPECTED;
	}
	
	//if there are still pending sets, signal the event again (which will tell write thread to call this funciton again)
	if(phid->changeRequests)
		CThread_set_event(&phid->phid.writeAvailableEvent);

	*lenp = phid->phid.outputReportByteLength;

	CThread_mutex_unlock(&phid->phid.outputLock);

	return EPHIDGET_OK;
}

//sendpacket - sends a packet to the device asynchronously, blocking if the 1-packet queue is full
//	-every LED has its own 1 state mini-queue
static int CCONV CPhidgetLED_sendpacket(CPhidgetLEDHandle phid,
    unsigned int index, double power)
{
	int waitReturn;
	CThread_mutex_lock(&phid->phid.writelock);
again:
	if (!CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_ATTACHED_FLAG))
	{
		CThread_mutex_unlock(&phid->phid.writelock);
		return EPHIDGET_NOTATTACHED;
	}
	CThread_mutex_lock(&phid->phid.outputLock);
	//if we have already requested a change on this LED
	if (phid->changedLED_Power[index]) {
		//and it was different then this time
		if (phid->nextLED_Power[index] != power) {
			CThread_mutex_unlock(&phid->phid.outputLock);
			//then wait for it to get written
			waitReturn = CThread_wait_on_event(&phid->phid.writtenEvent, 2500);
			switch(waitReturn)
			{
			case WAIT_OBJECT_0:
				break;
			case WAIT_ABANDONED:
				CThread_mutex_unlock(&phid->phid.writelock);
				return EPHIDGET_UNEXPECTED;
			case WAIT_TIMEOUT:
				CThread_mutex_unlock(&phid->phid.writelock);
				return EPHIDGET_TIMEOUT;
			}
			//and try again
			goto again;
		} else {
			CThread_mutex_unlock(&phid->phid.outputLock);
			CThread_mutex_unlock(&phid->phid.writelock);
			return EPHIDGET_OK;
		}
	//otherwise
	} else {
		//if it's different then current, queue it up
		if (phid->LED_Power[index] != power) {
			phid->changeRequests++;
			phid->changedLED_Power[index] = PTRUE;
			phid->nextLED_Power[index] = power;
			CThread_reset_event(&phid->phid.writtenEvent);
			CThread_mutex_unlock(&phid->phid.outputLock);
			CThread_set_event(&phid->phid.writeAvailableEvent);
		}
		//if it's the same, just return
		else
		{
			CThread_mutex_unlock(&phid->phid.outputLock);
			CThread_mutex_unlock(&phid->phid.writelock);
			return EPHIDGET_OK;
		}
	}
	CThread_mutex_unlock(&phid->phid.writelock);
	return EPHIDGET_OK;
}

// === Exported Functions === //

//create and initialize a device structure
CCREATE(LED, PHIDCLASS_LED)

CGET(LED,LEDCount,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED

	MASGN(phid.attr.led.numLEDs)
}

CGETINDEX(LED,DiscreteLED,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED
	TESTINDEX(phid.attr.led.numLEDs)
	if(phid->LED_Power[Index] == PUNK_DBL) 
	{ 
		*pVal = PUNK_INT; 
		return EPHIDGET_UNKNOWNVAL; 
	}

	*pVal = round(phid->LED_Power[Index]);
	return EPHIDGET_OK;
}
CSETINDEX(LED,DiscreteLED,int)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED
	TESTINDEX(phid.attr.led.numLEDs)
	TESTRANGE(0, 100)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(Brightness, "%d", LED_Power);
	else
		return CPhidgetLED_sendpacket(phid, Index, (double)newVal);

	return EPHIDGET_OK;
}

CGETINDEX(LED,Brightness,double)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED
	TESTINDEX(phid.attr.led.numLEDs)
	TESTMASGN(LED_Power[Index], PUNK_DBL)

	*pVal = phid->LED_Power[Index];
	return EPHIDGET_OK;
}
CSETINDEX(LED,Brightness,double)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED
	TESTINDEX(phid.attr.led.numLEDs)
	TESTRANGE(0, 100)

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEYINDEXED(Brightness, "%lf", LED_Power);
	else
		return CPhidgetLED_sendpacket(phid, Index, newVal);

	return EPHIDGET_OK;
}

CGETINDEX(LED,CurrentLimitIndexed,double)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED
	TESTINDEX(phid.attr.led.numLEDs)

	switch(phid->phid.deviceUID)
	{
		case PHIDUID_LED_64_ADV_M3:
			TESTMASGN(LED_CurrentLimit[Index], PUNK_DBL)

			*pVal = phid->LED_CurrentLimit[Index];
			return EPHIDGET_OK;
		case PHIDUID_LED_64_ADV:
		case PHIDUID_LED_64:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}
CSETINDEX(LED,CurrentLimitIndexed,double)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED
	TESTINDEX(phid.attr.led.numLEDs)

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_LED_64_ADV:
			TESTRANGE(0, LED64_M3_CURRENTLIMIT)

			if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
				ADDNETWORKKEYINDEXED(CurrentLimitIndexed, "%lf", LED_CurrentLimit);
			else
			{
				CThread_mutex_lock(&phid->phid.writelock);
				CThread_mutex_lock(&phid->phid.outputLock);
				phid->LED_CurrentLimit[Index] = newVal;
				phid->controlPacketWaiting = PTRUE;
				CThread_mutex_unlock(&phid->phid.outputLock);
				CThread_set_event(&phid->phid.writeAvailableEvent);
				CThread_mutex_unlock(&phid->phid.writelock);
			}
			break;
		case PHIDID_LED_64:
		default:
			return EPHIDGET_UNSUPPORTED;
	}

	return EPHIDGET_OK;
}

CGET(LED,CurrentLimit,CPhidgetLED_CurrentLimit)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_LED_64_ADV:
			MASGN(currentLimitEcho)
		case PHIDID_LED_64:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}
CSET(LED,CurrentLimit,CPhidgetLED_CurrentLimit)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_LED_64_ADV:

			TESTRANGE(PHIDGET_LED_CURRENT_LIMIT_20mA, PHIDGET_LED_CURRENT_LIMIT_80mA)

			if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
				ADDNETWORKKEY(CurrentLimit, "%d", currentLimit);
			else
			{
				CThread_mutex_lock(&phid->phid.writelock);
				CThread_mutex_lock(&phid->phid.outputLock);
				phid->currentLimit = newVal;
				phid->controlPacketWaiting = PTRUE;
				CThread_mutex_unlock(&phid->phid.outputLock);
				CThread_set_event(&phid->phid.writeAvailableEvent);
				CThread_mutex_unlock(&phid->phid.writelock);
			}
			break;
		case PHIDID_LED_64:
		default:
			return EPHIDGET_UNSUPPORTED;
	}

	return EPHIDGET_OK;
}

CGET(LED,Voltage,CPhidgetLED_Voltage)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_LED_64_ADV:
			MASGN(voltageEcho)
		case PHIDID_LED_64:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}
CSET(LED,Voltage,CPhidgetLED_Voltage)
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_LED)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_LED_64_ADV:

			TESTRANGE(PHIDGET_LED_CURRENT_LIMIT_20mA, PHIDGET_LED_CURRENT_LIMIT_80mA)

			if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
				ADDNETWORKKEY(Voltage, "%d", voltage);
			else
			{
				CThread_mutex_lock(&phid->phid.writelock);
				CThread_mutex_lock(&phid->phid.outputLock);
				phid->voltage = newVal;
				phid->controlPacketWaiting = PTRUE;
				CThread_mutex_unlock(&phid->phid.outputLock);
				CThread_set_event(&phid->phid.writeAvailableEvent);
				CThread_mutex_unlock(&phid->phid.writelock);
			}
			break;
		case PHIDID_LED_64:
		default:
			return EPHIDGET_UNSUPPORTED;
	}

	return EPHIDGET_OK;
}

// === Deprecated Functions === //

CGET(LED,NumLEDs,int)
	return CPhidgetLED_getLEDCount(phid, pVal);
}