aboutsummaryrefslogtreecommitdiffstats
path: root/inflate.c
diff options
context:
space:
mode:
Diffstat (limited to 'inflate.c')
-rw-r--r--inflate.c1318
1 files changed, 1318 insertions, 0 deletions
diff --git a/inflate.c b/inflate.c
new file mode 100644
index 0000000..e2c5dbe
--- /dev/null
+++ b/inflate.c
@@ -0,0 +1,1318 @@
+/*
+ * inflate.c - inflate decompression routine
+ *
+ * Version 1.1
+ */
+
+/*
+ * Copyright (c) 1995, Edward B. Hamrick
+ *
+ * Permission to use, copy, modify, distribute, and sell this software and
+ * its documentation for any purpose is hereby granted without fee, provided
+ * that
+ *
+ * (i) the above copyright notice and the text in this "C" comment block
+ * appear in all copies of the software and related documentation, and
+ *
+ * (ii) any modifications to this source file must be sent, via e-mail
+ * to the copyright owner (currently hamrick@primenet.com) within
+ * 30 days of such modification.
+ *
+ * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
+ * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * IN NO EVENT SHALL EDWARD B. HAMRICK BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
+ * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
+ * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
+ * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/*
+ * inflate.c is based on the public-domain (non-copyrighted) version
+ * written by Mark Adler, version c14o, 23 August 1994. It has been
+ * modified to be reentrant, more portable, and to be data driven.
+ */
+
+/*
+ * 1) All file i/o is done externally to these routines
+ * 2) Routines are symmetrical so inflate can feed into deflate
+ * 3) Routines can be easily integrated into wide range of applications
+ * 4) Routines are very portable, and use only ANSI C
+ * 5) No #defines in inflate.h to conflict with external #defines
+ * 6) No external routines need be called by these routines
+ * 7) Buffers are owned by the calling routine
+ * 8) No static non-constant variables are allowed
+ */
+
+/*
+ * Note that for each call to InflatePutBuffer, there will be
+ * 0 or more calls to (*putbuffer_ptr). Before InflatePutBuffer
+ * returns, it will have output as much uncompressed data as
+ * is possible.
+ */
+
+#ifdef MEMCPY
+#include <mem.h>
+#endif
+
+#include "inflate.h"
+
+/*
+ * Macros for constants
+ */
+
+#ifndef NULL
+#define NULL ((void *) 0)
+#endif
+
+#ifndef TRUE
+#define TRUE 1
+#endif
+
+#ifndef FALSE
+#define FALSE 0
+#endif
+
+#ifndef WINDOWSIZE
+#define WINDOWSIZE 0x8000
+#endif
+
+#ifndef WINDOWMASK
+#define WINDOWMASK 0x7fff
+#endif
+
+#ifndef BUFFERSIZE
+#define BUFFERSIZE 0x4000
+#endif
+
+#ifndef BUFFERMASK
+#define BUFFERMASK 0x3fff
+#endif
+
+#ifndef INFLATESTATETYPE
+#define INFLATESTATETYPE 0xabcdabcdL
+#endif
+
+/*
+ * typedefs
+ */
+
+typedef unsigned long ulg;
+typedef unsigned short ush;
+typedef unsigned char uch;
+
+/* Structure to hold state for inflating zip files */
+struct InflateState {
+
+ unsigned long runtimetypeid1; /* to detect run-time errors */
+ int errorencountered; /* error encountered flag */
+
+ /* Decoding state */
+ int state; /* -1 -> need block type */
+ /* 0 -> need stored setup */
+ /* 1 -> need fixed setup */
+ /* 2 -> need dynamic setup */
+ /* 10 -> need stored data */
+ /* 11 -> need fixed data */
+ /* 12 -> need dynamic data */
+
+/* State for decoding fixed & dynamic data */
+ struct huft *tl; /* literal/length decoder tbl */
+ struct huft *td; /* distance decoder table */
+ int bl; /* bits decoded by tl */
+ int bd; /* bits decoded by td */
+
+ /* State for decoding stored data */
+ unsigned int storelength;
+
+ /* State to keep track that last block has been encountered */
+ int lastblock; /* current block is last */
+
+ /* Input buffer state (circular) */
+ ulg bb; /* input buffer bits */
+ unsigned int bk; /* input buffer count of bits */
+ unsigned int bp; /* input buffer pointer */
+ unsigned int bs; /* input buffer size */
+ unsigned char buffer[BUFFERSIZE]; /* input buffer data */
+
+ /* Storage for try/catch */
+ ulg catch_bb; /* bit buffer */
+ unsigned int catch_bk; /* bits in bit buffer */
+ unsigned int catch_bp; /* buffer pointer */
+ unsigned int catch_bs; /* buffer size */
+
+ /* Output window state (circular) */
+ unsigned int wp; /* output window pointer */
+ unsigned int wf; /* output window flush-from */
+ unsigned char window[WINDOWSIZE]; /* output window data */
+
+ /* Application state */
+ void *AppState; /* opaque ptr for callout */
+
+ /* pointers to call-outs */
+ int (*putbuffer_ptr)( /* returns 0 on success */
+ void *AppState, /* opaque ptr from Initialize */
+ unsigned char *buffer, /* buffer to put */
+ long length /* length of buffer */
+ );
+
+ void *(*malloc_ptr)(long length); /* utility routine */
+
+ void (*free_ptr)(void *buffer); /* utility routine */
+
+ unsigned long runtimetypeid2; /* to detect run-time errors */
+};
+
+/*
+ * Error handling macro
+ */
+
+#define ERROREXIT(is) {(is)->errorencountered = TRUE; return TRUE;}
+
+/*
+ * Macros for handling data in the input buffer
+ *
+ * Note that the NEEDBITS and DUMPBITS macros
+ * need to be bracketed by the TRY/CATCH macros
+ *
+ * The usage is:
+ *
+ * TRY
+ * {
+ * NEEDBITS(j)
+ * x = b & mask_bits[j];
+ * DUMPBITS(j)
+ * }
+ * CATCH_BEGIN
+ * cleanup code
+ * CATCH_END
+ *
+ * Note that there can only be one TRY/CATCH pair per routine
+ * because of the use of goto in the implementation of the macros.
+ *
+ * NEEDBITS makes sure that b has at least j bits in it, and
+ * DUMPBITS removes the bits from b. The macros use the variable k
+ * for the number of bits in b. Normally, b and k are register
+ * variables for speed, and are initialized at the beginning of a
+ * routine that uses these macros from a global bit buffer and count.
+ *
+ * In order to not ask for more bits than there are in the compressed
+ * stream, the Huffman tables are constructed to only ask for just
+ * enough bits to make up the end-of-block code (value 256). Then no
+ * bytes need to be "returned" to the buffer at the end of the last
+ * block. See the huft_build() routine.
+ */
+
+#define TRY \
+ is->catch_bb = b; \
+ is->catch_bk = k; \
+ is->catch_bp = is->bp; \
+ is->catch_bs = is->bs;
+
+#define CATCH_BEGIN \
+ goto cleanup_done; \
+ cleanup: \
+ b = is->catch_bb; \
+ k = is->catch_bk; \
+ is->bb = b; \
+ is->bk = k; \
+ is->bp = is->catch_bp; \
+ is->bs = is->catch_bs;
+
+#define CATCH_END \
+ cleanup_done: ;
+
+#define NEEDBITS(n) \
+{ \
+ while (k < (n)) \
+ { \
+ if (is->bs <= 0) \
+ { \
+ goto cleanup; \
+ } \
+ b |= ((ulg) (is->buffer[is->bp & BUFFERMASK])) << k; \
+ is->bs--; \
+ is->bp++; \
+ k += 8; \
+ } \
+}
+
+#define DUMPBITS(n) \
+{ \
+ b >>= (n); \
+ k -= (n); \
+}
+
+/*
+ * Macro for flushing the output window to the putbuffer callout.
+ *
+ * Note that the window is always flushed when it fills to 32K,
+ * and before returning to the application.
+ */
+
+#define FLUSHWINDOW(w, now) \
+if ((now && (is->wp > is->wf)) || ((w) >= WINDOWSIZE)) \
+{ \
+ is->wp = (w); \
+ if ((*(is->putbuffer_ptr)) \
+ (is->AppState, is->window+is->wf, is->wp-is->wf)) \
+ ERROREXIT(is); \
+ is->wp &= WINDOWMASK; \
+ is->wf = is->wp; \
+ (w) = is->wp; \
+}
+
+/*
+ * Inflate deflated (PKZIP's method 8 compressed) data. The compression
+ * method searches for as much of the current string of bytes (up to a
+ * length of 258) in the previous 32K bytes. If it doesn't find any
+ * matches (of at least length 3), it codes the next byte. Otherwise, it
+ * codes the length of the matched string and its distance backwards from
+ * the current position. There is a single Huffman code that codes both
+ * single bytes (called "literals") and match lengths. A second Huffman
+ * code codes the distance information, which follows a length code. Each
+ * length or distance code actually represents a base value and a number
+ * of "extra" (sometimes zero) bits to get to add to the base value. At
+ * the end of each deflated block is a special end-of-block (EOB) literal/
+ * length code. The decoding process is basically: get a literal/length
+ * code; if EOB then done; if a literal, emit the decoded byte; if a
+ * length then get the distance and emit the referred-to bytes from the
+ * sliding window of previously emitted data.
+ *
+ * There are (currently) three kinds of inflate blocks: stored, fixed, and
+ * dynamic. The compressor outputs a chunk of data at a time and decides
+ * which method to use on a chunk-by-chunk basis. A chunk might typically
+ * be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
+ * "stored" method is used. In this case, the bytes are simply stored as
+ * is, eight bits per byte, with none of the above coding. The bytes are
+ * preceded by a count, since there is no longer an EOB code.
+ *
+ * If the data is compressible, then either the fixed or dynamic methods
+ * are used. In the dynamic method, the compressed data is preceded by
+ * an encoding of the literal/length and distance Huffman codes that are
+ * to be used to decode this block. The representation is itself Huffman
+ * coded, and so is preceded by a description of that code. These code
+ * descriptions take up a little space, and so for small blocks, there is
+ * a predefined set of codes, called the fixed codes. The fixed method is
+ * used if the block ends up smaller that way (usually for quite small
+ * chunks); otherwise the dynamic method is used. In the latter case, the
+ * codes are customized to the probabilities in the current block and so
+ * can code it much better than the pre-determined fixed codes can.
+ *
+ * The Huffman codes themselves are decoded using a mutli-level table
+ * lookup, in order to maximize the speed of decoding plus the speed of
+ * building the decoding tables. See the comments below that precede the
+ * lbits and dbits tuning parameters.
+ */
+
+/*
+ * Notes beyond the 1.93a appnote.txt:
+ *
+ * 1. Distance pointers never point before the beginning of the output
+ * stream.
+ * 2. Distance pointers can point back across blocks, up to 32k away.
+ * 3. There is an implied maximum of 7 bits for the bit length table and
+ * 15 bits for the actual data.
+ * 4. If only one code exists, then it is encoded using one bit. (Zero
+ * would be more efficient, but perhaps a little confusing.) If two
+ * codes exist, they are coded using one bit each (0 and 1).
+ * 5. There is no way of sending zero distance codes--a dummy must be
+ * sent if there are none. (History: a pre 2.0 version of PKZIP would
+ * store blocks with no distance codes, but this was discovered to be
+ * too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
+ * zero distance codes, which is sent as one code of zero bits in
+ * length.
+ * 6. There are up to 286 literal/length codes. Code 256 represents the
+ * end-of-block. Note however that the static length tree defines
+ * 288 codes just to fill out the Huffman codes. Codes 286 and 287
+ * cannot be used though, since there is no length base or extra bits
+ * defined for them. Similarly, there are up to 30 distance codes.
+ * However, static trees define 32 codes (all 5 bits) to fill out the
+ * Huffman codes, but the last two had better not show up in the data.
+ * 7. Unzip can check dynamic Huffman blocks for complete code sets.
+ * The exception is that a single code would not be complete (see #4).
+ * 8. The five bits following the block type is really the number of
+ * literal codes sent minus 257.
+ * 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
+ * (1+6+6). Therefore, to output three times the length, you output
+ * three codes (1+1+1), whereas to output four times the same length,
+ * you only need two codes (1+3). Hmm.
+ *10. In the tree reconstruction algorithm, Code = Code + Increment
+ * only if BitLength(i) is not zero. (Pretty obvious.)
+ *11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
+ *12. Note: length code 284 can represent 227-258, but length code 285
+ * really is 258. The last length deserves its own, short code
+ * since it gets used a lot in very redundant files. The length
+ * 258 is special since 258 - 3 (the min match length) is 255.
+ *13. The literal/length and distance code bit lengths are read as a
+ * single stream of lengths. It is possible (and advantageous) for
+ * a repeat code (16, 17, or 18) to go across the boundary between
+ * the two sets of lengths.
+ */
+
+/*
+ * Huffman code lookup table entry--this entry is four bytes for machines
+ * that have 16-bit pointers (e.g. PC's in the small or medium model).
+ * Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
+ * means that v is a literal, 16 < e < 32 means that v is a pointer to
+ * the next table, which codes e - 16 bits, and lastly e == 99 indicates
+ * an unused code. If a code with e == 99 is looked up, this implies an
+ * error in the data.
+ */
+
+struct huft {
+ uch e; /* number of extra bits or operation */
+ uch b; /* number of bits in this code or subcode */
+ union {
+ ush n; /* literal, length base, or distance base */
+ struct huft *t; /* pointer to next level of table */
+ } v;
+};
+
+/*
+ * Tables for deflate from PKZIP's appnote.txt.
+ */
+
+static const unsigned border[] = { /* Order of the bit length code lengths */
+ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
+
+static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
+ 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
+ /* note: see note #13 above about the 258 in this list. */
+
+static const ush cplext[] = { /* Extra bits for literal codes 257..285 */
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
+ 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
+
+static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
+ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
+ 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
+ 8193, 12289, 16385, 24577};
+
+static const ush cpdext[] = { /* Extra bits for distance codes */
+ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
+ 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
+ 12, 12, 13, 13};
+
+/*
+ * Constants for run-time computation of mask
+ */
+
+static const ush mask_bits[] = {
+ 0x0000,
+ 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
+ 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
+};
+
+/*
+ * Huffman code decoding is performed using a multi-level table lookup.
+ * The fastest way to decode is to simply build a lookup table whose
+ * size is determined by the longest code. However, the time it takes
+ * to build this table can also be a factor if the data being decoded
+ * is not very long. The most common codes are necessarily the
+ * shortest codes, so those codes dominate the decoding time, and hence
+ * the speed. The idea is you can have a shorter table that decodes the
+ * shorter, more probable codes, and then point to subsidiary tables for
+ * the longer codes. The time it costs to decode the longer codes is
+ * then traded against the time it takes to make longer tables.
+ *
+ * This results of this trade are in the variables lbits and dbits
+ * below. lbits is the number of bits the first level table for literal/
+ * length codes can decode in one step, and dbits is the same thing for
+ * the distance codes. Subsequent tables are also less than or equal to
+ * those sizes. These values may be adjusted either when all of the
+ * codes are shorter than that, in which case the longest code length in
+ * bits is used, or when the shortest code is *longer* than the requested
+ * table size, in which case the length of the shortest code in bits is
+ * used.
+ *
+ * There are two different values for the two tables, since they code a
+ * different number of possibilities each. The literal/length table
+ * codes 286 possible values, or in a flat code, a little over eight
+ * bits. The distance table codes 30 possible values, or a little less
+ * than five bits, flat. The optimum values for speed end up being
+ * about one bit more than those, so lbits is 8+1 and dbits is 5+1.
+ * The optimum values may differ though from machine to machine, and
+ * possibly even between compilers. Your mileage may vary.
+ */
+
+static const int lbits = 9; /* bits in base literal/length lookup table */
+static const int dbits = 6; /* bits in base distance lookup table */
+
+/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
+#define BMAX 16 /* maximum bit length of any code (16 for explode) */
+#define N_MAX 288 /* maximum number of codes in any set */
+
+/*
+ * Free the malloc'ed tables built by huft_build(), which makes a linked
+ * list of the tables it made, with the links in a dummy first entry of
+ * each table.
+ */
+
+static int huft_free(
+ struct InflateState *is, /* Inflate state */
+ struct huft *t /* table to free */
+)
+{
+ struct huft *p, *q;
+
+ /* Go through linked list, freeing from the malloced (t[-1]) address. */
+ p = t;
+ while (p != (struct huft *)NULL)
+ {
+ q = (--p)->v.t;
+ (*is->free_ptr)((char*)p);
+ p = q;
+ }
+ return 0;
+}
+
+/*
+ * Given a list of code lengths and a maximum table size, make a set of
+ * tables to decode that set of codes. Return zero on success, one if
+ * the given code set is incomplete (the tables are still built in this
+ * case), two if the input is invalid (all zero length codes or an
+ * oversubscribed set of lengths), and three if not enough memory.
+ * The code with value 256 is special, and the tables are constructed
+ * so that no bits beyond that code are fetched when that code is
+ * decoded.
+ */
+
+static int huft_build(
+ struct InflateState *is, /* Inflate state */
+ unsigned *b, /* code lengths in bits (all assumed <= BMAX) */
+ unsigned n, /* number of codes (assumed <= N_MAX) */
+ unsigned s, /* number of simple-valued codes (0..s-1) */
+ const ush *d, /* list of base values for non-simple codes */
+ const ush *e, /* list of extra bits for non-simple codes */
+ struct huft **t, /* result: starting table */
+ int *m /* maximum lookup bits, returns actual */
+)
+{
+ unsigned a; /* counter for codes of length k */
+ unsigned c[BMAX+1]; /* bit length count table */
+ unsigned el; /* length of EOB code (value 256) */
+ unsigned f; /* i repeats in table every f entries */
+ int g; /* maximum code length */
+ int h; /* table level */
+ unsigned i; /* counter, current code */
+ unsigned j; /* counter */
+ int k; /* number of bits in current code */
+ int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
+ int *l = lx+1; /* stack of bits per table */
+ unsigned *p; /* pointer into c[], b[], or v[] */
+ struct huft *q; /* points to current table */
+ struct huft r; /* table entry for structure assignment */
+ struct huft *u[BMAX]; /* table stack */
+ unsigned v[N_MAX]; /* values in order of bit length */
+ int w; /* bits before this table == (l * h) */
+ unsigned x[BMAX+1]; /* bit offsets, then code stack */
+ unsigned *xp; /* pointer into x */
+ int y; /* number of dummy codes added */
+ unsigned z; /* number of entries in current table */
+
+ /* clear the bit length count table */
+ for (i=0; i<(BMAX+1); i++)
+ {
+ c[i] = 0;
+ }
+
+ /* Generate counts for each bit length */
+ el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
+ p = b; i = n;
+ do {
+ c[*p]++; p++; /* assume all entries <= BMAX */
+ } while (--i);
+ if (c[0] == n) /* null input--all zero length codes */
+ {
+ *t = (struct huft *)NULL;
+ *m = 0;
+ return 0;
+ }
+
+ /* Find minimum and maximum length, bound *m by those */
+ for (j = 1; j <= BMAX; j++)
+ if (c[j])
+ break;
+ k = j; /* minimum code length */
+ if ((unsigned)*m < j)
+ *m = j;
+ for (i = BMAX; i; i--)
+ if (c[i])
+ break;
+ g = i; /* maximum code length */
+ if ((unsigned)*m > i)
+ *m = i;
+
+ /* Adjust last length count to fill out codes, if needed */
+ for (y = 1 << j; j < i; j++, y <<= 1)
+ if ((y -= c[j]) < 0)
+ return 2; /* bad input: more codes than bits */
+ if ((y -= c[i]) < 0)
+ return 2;
+ c[i] += y;
+
+ /* Generate starting offsets into the value table for each length */
+ x[1] = j = 0;
+ p = c + 1; xp = x + 2;
+ while (--i) { /* note that i == g from above */
+ *xp++ = (j += *p++);
+ }
+
+ /* Make a table of values in order of bit lengths */
+ p = b; i = 0;
+ do {
+ if ((j = *p++) != 0)
+ v[x[j]++] = i;
+ } while (++i < n);
+
+ /* Generate the Huffman codes and for each, make the table entries */
+ x[0] = i = 0; /* first Huffman code is zero */
+ p = v; /* grab values in bit order */
+ h = -1; /* no tables yet--level -1 */
+ w = l[-1] = 0; /* no bits decoded yet */
+ u[0] = (struct huft *)NULL; /* just to keep compilers happy */
+ q = (struct huft *)NULL; /* ditto */
+ z = 0; /* ditto */
+
+ /* go through the bit lengths (k already is bits in shortest code) */
+ for (; k <= g; k++)
+ {
+ a = c[k];
+ while (a--)
+ {
+ /* here i is the Huffman code of length k bits for value *p */
+ /* make tables up to required level */
+ while (k > w + l[h])
+ {
+ w += l[h++]; /* add bits already decoded */
+
+ /* compute minimum size table less than or equal to *m bits */
+ z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */
+ if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
+ { /* too few codes for k-w bit table */
+ f -= a + 1; /* deduct codes from patterns left */
+ xp = c + k;
+ while (++j < z) /* try smaller tables up to z bits */
+ {
+ if ((f <<= 1) <= *++xp)
+ break; /* enough codes to use up j bits */
+ f -= *xp; /* else deduct codes from patterns */
+ }
+ }
+ if ((unsigned)w + j > el && (unsigned)w < el)
+ j = el - w; /* make EOB code end at table */
+ z = 1 << j; /* table entries for j-bit table */
+ l[h] = j; /* set table size in stack */
+
+ /* allocate and link in new table */
+ if ((q = (struct huft *)
+ ((*is->malloc_ptr)((z + 1)*sizeof(struct huft)))) ==
+ (struct huft *)NULL)
+ {
+ if (h)
+ huft_free(is, u[0]);
+ return 3; /* not enough memory */
+ }
+ *t = q + 1; /* link to list for huft_free() */
+ *(t = &(q->v.t)) = (struct huft *)NULL;
+ u[h] = ++q; /* table starts after link */
+
+ /* connect to last table, if there is one */
+ if (h)
+ {
+ x[h] = i; /* save pattern for backing up */
+ r.b = (uch)l[h-1]; /* bits to dump before this table */
+ r.e = (uch)(16 + j); /* bits in this table */
+ r.v.t = q; /* pointer to this table */
+ j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
+ u[h-1][j] = r; /* connect to last table */
+ }
+ }
+
+ /* set up table entry in r */
+ r.b = (uch)(k - w);
+ if (p >= v + n)
+ r.e = 99; /* out of values--invalid code */
+ else if (*p < s)
+ {
+ r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
+ r.v.n = (ush) *p++; /* simple code is just the value */
+ }
+ else
+ {
+ r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
+ r.v.n = d[*p++ - s];
+ }
+
+ /* fill code-like entries with r */
+ f = 1 << (k - w);
+ for (j = i >> w; j < z; j += f)
+ q[j] = r;
+
+ /* backwards increment the k-bit code i */
+ for (j = 1 << (k - 1); i & j; j >>= 1)
+ i ^= j;
+ i ^= j;
+
+ /* backup over finished tables */
+ while ((i & ((1 << w) - 1)) != x[h])
+ w -= l[--h]; /* don't need to update q */
+ }
+ }
+
+ /* return actual size of base table */
+ *m = l[0];
+
+ /* Return true (1) if we were given an incomplete table */
+ return y != 0 && g != 1;
+}
+
+/*
+ * inflate (decompress) the codes in a stored (uncompressed) block.
+ * Return an error code or zero if it all goes ok.
+ */
+
+static int inflate_stored(
+ struct InflateState *is /* Inflate state */
+)
+{
+ ulg b; /* bit buffer */
+ unsigned k; /* number of bits in bit buffer */
+ unsigned w; /* current window position */
+
+ /* make local copies of state */
+ b = is->bb; /* initialize bit buffer */
+ k = is->bk; /* initialize bit count */
+ w = is->wp; /* initialize window position */
+
+ /*
+ * Note that this code knows that NEEDBITS jumps to cleanup
+ */
+
+ while (is->storelength > 0) /* do until end of block */
+ {
+ NEEDBITS(8)
+ is->window[w++] = (uch) b;
+ DUMPBITS(8)
+ FLUSHWINDOW(w, FALSE);
+ is->storelength--;
+ }
+
+ cleanup:
+
+ /* restore the state from the locals */
+ is->bb = b; /* restore bit buffer */
+ is->bk = k; /* restore bit count */
+ is->wp = w; /* restore window pointer */
+
+ if (is->storelength > 0)
+ return -1;
+ else
+ return 0;
+}
+
+static int inflate_codes(
+ struct InflateState *is, /* Inflate state */
+ struct huft *tl, /* literal/length decoder table */
+ struct huft *td, /* distance decoder table */
+ int bl, /* number of bits decoded by tl[] */
+ int bd /* number of bits decoded by td[] */
+)
+{
+ unsigned e; /* table entry flag/number of extra bits */
+ unsigned n, d; /* length and index for copy */
+ unsigned w; /* current window position */
+ struct huft *t; /* pointer to table entry */
+ unsigned ml, md; /* masks for bl and bd bits */
+ ulg b; /* bit buffer */
+ unsigned k; /* number of bits in bit buffer */
+
+ /* make local copies of state */
+ b = is->bb; /* initialize bit buffer */
+ k = is->bk; /* initialize bit count */
+ w = is->wp; /* initialize window position */
+
+ /* inflate the coded data */
+ ml = mask_bits[bl]; /* precompute masks for speed */
+ md = mask_bits[bd];
+ for (;;) /* do until end of block */
+ {
+ TRY
+ {
+ NEEDBITS((unsigned)bl)
+ if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
+ do {
+ if (e == 99)
+ return 1;
+ DUMPBITS(t->b)
+ e -= 16;
+ NEEDBITS(e)
+ } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
+ DUMPBITS(t->b)
+
+ if (e == 16) /* it's a literal */
+ {
+ is->window[w++] = (uch)t->v.n;
+ FLUSHWINDOW(w, FALSE);
+ }
+ else if (e == 15) /* it's an EOB */
+ {
+ break;
+ }
+ else /* it's a length */
+ {
+ /* get length of block to copy */
+ NEEDBITS(e)
+ n = t->v.n + ((unsigned)b & mask_bits[e]);
+ DUMPBITS(e);
+
+ /* decode distance of block to copy */
+ NEEDBITS((unsigned)bd)
+ if ((e = (t = td + ((unsigned)b & md))->e) > 16)
+ do {
+ if (e == 99)
+ return 1;
+ DUMPBITS(t->b)
+ e -= 16;
+ NEEDBITS(e)
+ } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
+ DUMPBITS(t->b)
+ NEEDBITS(e)
+ d = w - t->v.n - ((unsigned)b & mask_bits[e]);
+ DUMPBITS(e)
+
+ /* do the copy */
+ do {
+ n -= (e = ((e = WINDOWSIZE - ((d &= WINDOWMASK) > w ? d : w)) > n)
+ ? n : e
+ );
+#if defined(MEMCPY)
+ if (w - d >= e) /* (this test assumes unsigned comparison) */
+ {
+ memcpy(is->window + w, is->window + d, e);
+ w += e;
+ d += e;
+ }
+ else /* do it slow to avoid memcpy() overlap */
+#endif /* MEMCPY */
+ do {
+ is->window[w++] = is->window[d++];
+ } while (--e);
+ FLUSHWINDOW(w, FALSE);
+ } while (n);
+ }
+ }
+ CATCH_BEGIN
+ is->wp = w; /* restore window pointer */
+ return -1;
+ CATCH_END
+ }
+
+ /* restore the state from the locals */
+ is->bb = b; /* restore bit buffer */
+ is->bk = k; /* restore bit count */
+ is->wp = w; /* restore window pointer */
+
+ /* done */
+ return 0;
+}
+
+/*
+ * "decompress" an inflated type 0 (stored) block.
+ */
+
+static int inflate_stored_setup(
+ struct InflateState *is /* Inflate state */
+)
+{
+ unsigned n; /* number of bytes in block */
+ ulg b; /* bit buffer */
+ unsigned k; /* number of bits in bit buffer */
+
+ /* make local copies of state */
+ b = is->bb; /* initialize bit buffer */
+ k = is->bk; /* initialize bit count */
+
+ TRY
+ {
+ /* go to byte boundary */
+ n = k & 7;
+ DUMPBITS(n);
+
+ /* get the length and its complement */
+ NEEDBITS(16)
+ n = ((unsigned)b & 0xffff);
+ DUMPBITS(16)
+ NEEDBITS(16)
+ if (n != (unsigned)((~b) & 0xffff))
+ return 1; /* error in compressed data */
+ DUMPBITS(16)
+ }
+ CATCH_BEGIN
+ return -1;
+ CATCH_END
+
+ /* Save store state for this block */
+ is->storelength = n;
+
+ /* restore the state from the locals */
+ is->bb = b; /* restore bit buffer */
+ is->bk = k; /* restore bit count */
+
+ return 0;
+}
+
+/*
+ * decompress an inflated type 1 (fixed Huffman codes) block. We should
+ * either replace this with a custom decoder, or at least precompute the
+ * Huffman tables.
+ */
+
+static int inflate_fixed_setup(
+ struct InflateState *is /* Inflate state */
+)
+{
+ int i; /* temporary variable */
+ struct huft *tl; /* literal/length code table */
+ struct huft *td; /* distance code table */
+ int bl; /* lookup bits for tl */
+ int bd; /* lookup bits for td */
+ unsigned l[288]; /* length list for huft_build */
+
+ /* set up literal table */
+ for (i = 0; i < 144; i++)
+ l[i] = 8;
+ for (; i < 256; i++)
+ l[i] = 9;
+ for (; i < 280; i++)
+ l[i] = 7;
+ for (; i < 288; i++) /* make a complete, but wrong code set */
+ l[i] = 8;
+ bl = 7;
+ if ((i = huft_build(is, l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
+ return i;
+
+ /* set up distance table */
+ for (i = 0; i < 30; i++) /* make an incomplete code set */
+ l[i] = 5;
+ bd = 5;
+ if ((i = huft_build(is, l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
+ {
+ huft_free(is, tl);
+ return i;
+ }
+
+ /* Save inflate state for this block */
+ is->tl = tl;
+ is->td = td;
+ is->bl = bl;
+ is->bd = bd;
+
+ return 0;
+}
+
+/*
+ * decompress an inflated type 2 (dynamic Huffman codes) block.
+ */
+
+#define PKZIP_BUG_WORKAROUND
+
+static int inflate_dynamic_setup(
+ struct InflateState *is /* Inflate state */
+)
+{
+ int i; /* temporary variables */
+ unsigned j;
+ unsigned l; /* last length */
+ unsigned m; /* mask for bit lengths table */
+ unsigned n; /* number of lengths to get */
+ struct huft *tl; /* literal/length code table */
+ struct huft *td; /* distance code table */
+ int bl; /* lookup bits for tl */
+ int bd; /* lookup bits for td */
+ unsigned nb; /* number of bit length codes */
+ unsigned nl; /* number of literal/length codes */
+ unsigned nd; /* number of distance codes */
+#ifdef PKZIP_BUG_WORKAROUND
+ unsigned ll[288+32]; /* literal/length and distance code lengths */
+#else
+ unsigned ll[286+30]; /* literal/length and distance code lengths */
+#endif
+ ulg b; /* bit buffer */
+ unsigned k; /* number of bits in bit buffer */
+
+ /* make local copies of state */
+ b = is->bb; /* initialize bit buffer */
+ k = is->bk; /* initialize bit count */
+
+ /* initialize tl for cleanup */
+ tl = NULL;
+
+ TRY
+ {
+ /* read in table lengths */
+ NEEDBITS(5)
+ nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
+ DUMPBITS(5)
+ NEEDBITS(5)
+ nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
+ DUMPBITS(5)
+ NEEDBITS(4)
+ nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
+ DUMPBITS(4)
+#ifdef PKZIP_BUG_WORKAROUND
+ if (nl > 288 || nd > 32)
+#else
+ if (nl > 286 || nd > 30)
+#endif
+ return 1; /* bad lengths */
+
+ /* read in bit-length-code lengths */
+ for (j = 0; j < 19; j++) ll[j] = 0;
+ for (j = 0; j < nb; j++)
+ {
+ NEEDBITS(3)
+ ll[border[j]] = (unsigned)b & 7;
+ DUMPBITS(3)
+ }
+
+ /* build decoding table for trees--single level, 7 bit lookup */
+ bl = 7;
+ if ((i = huft_build(is, ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
+ {
+ if (i == 1)
+ huft_free(is, tl);
+ return i; /* incomplete code set */
+ }
+
+ /* read in literal and distance code lengths */
+ n = nl + nd;
+ m = mask_bits[bl];
+ i = l = 0;
+ while ((unsigned)i < n)
+ {
+ NEEDBITS((unsigned)bl)
+ j = (td = tl + ((unsigned)b & m))->b;
+ DUMPBITS(j)
+ j = td->v.n;
+ if (j < 16) /* length of code in bits (0..15) */
+ ll[i++] = l = j; /* save last length in l */
+ else if (j == 16) /* repeat last length 3 to 6 times */
+ {
+ NEEDBITS(2)
+ j = 3 + ((unsigned)b & 3);
+ DUMPBITS(2)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = l;
+ }
+ else if (j == 17) /* 3 to 10 zero length codes */
+ {
+ NEEDBITS(3)
+ j = 3 + ((unsigned)b & 7);
+ DUMPBITS(3)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = 0;
+ l = 0;
+ }
+ else /* j == 18: 11 to 138 zero length codes */
+ {
+ NEEDBITS(7)
+ j = 11 + ((unsigned)b & 0x7f);
+ DUMPBITS(7)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = 0;
+ l = 0;
+ }
+ }
+
+ /* free decoding table for trees */
+ huft_free(is, tl);
+ }
+ CATCH_BEGIN
+ if (tl) huft_free(is, tl);
+ return -1;
+ CATCH_END
+
+ /* restore the state from the locals */
+ is->bb = b; /* restore bit buffer */
+ is->bk = k; /* restore bit count */
+
+ /* build the decoding tables for literal/length and distance codes */
+ bl = lbits;
+ if ((i = huft_build(is, ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
+ {
+ if (i == 1) {
+ /* incomplete literal tree */
+ huft_free(is, tl);
+ }
+ return i; /* incomplete code set */
+ }
+ bd = dbits;
+ if ((i = huft_build(is, ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
+ {
+ if (i == 1) {
+ /* incomplete distance tree */
+#ifdef PKZIP_BUG_WORKAROUND
+ }
+#else
+ huft_free(is, td);
+ }
+ huft_free(is, tl);
+ return i; /* incomplete code set */
+#endif
+ }
+
+ /* Save inflate state for this block */
+ is->tl = tl;
+ is->td = td;
+ is->bl = bl;
+ is->bd = bd;
+
+ return 0;
+}
+
+/* Routine to initialize inflate decompression */
+void *InflateInitialize( /* returns InflateState */
+ void *AppState, /* for passing to putbuffer */
+ int (*putbuffer_ptr)( /* returns 0 on success */
+ void *AppState, /* opaque ptr from Initialize */
+ unsigned char *buffer, /* buffer to put */
+ long length /* length of buffer */
+ ),
+ void *(*malloc_ptr)(long length), /* utility routine */
+ void (*free_ptr)(void *buffer) /* utility routine */
+)
+{
+ struct InflateState *is;
+
+ /* Do some argument checking */
+ if ((!putbuffer_ptr) || (!malloc_ptr) || (!free_ptr)) return NULL;
+
+ /* Allocate the InflateState memory area */
+ is = (struct InflateState *) (*malloc_ptr)(sizeof(struct InflateState));
+ if (!is) return NULL;
+
+ /* Set up the initial values of the inflate state */
+ is->runtimetypeid1 = INFLATESTATETYPE;
+ is->errorencountered = FALSE;
+
+ is->bb = 0;
+ is->bk = 0;
+ is->bp = 0;
+ is->bs = 0;
+
+ is->wp = 0;
+ is->wf = 0;
+
+ is->state = -1;
+ is->lastblock = FALSE;
+
+ is->AppState = AppState;
+
+ is->putbuffer_ptr = putbuffer_ptr;
+ is->malloc_ptr = malloc_ptr;
+ is->free_ptr = free_ptr;
+
+ is->runtimetypeid2 = INFLATESTATETYPE;
+
+ /* Return this state info to the caller */
+ return is;
+}
+
+/* Call-in routine to put a buffer into inflate decompression */
+int InflatePutBuffer( /* returns 0 on success */
+ void *InflateState, /* opaque ptr from Initialize */
+ unsigned char *buffer, /* buffer to put */
+ long length /* length of buffer */
+)
+{
+ struct InflateState *is;
+
+ int beginstate;
+
+ /* Get (and check) the InflateState structure */
+ is = (struct InflateState *) InflateState;
+ if (!is || (is->runtimetypeid1 != INFLATESTATETYPE)
+ || (is->runtimetypeid2 != INFLATESTATETYPE)) return TRUE;
+ if (is->errorencountered) return TRUE;
+
+ do
+ {
+ int size, i;
+
+
+ if ((is->state == -1) && (is->lastblock)) break;
+
+ /* Save the beginning state */
+ beginstate = is->state;
+
+ /* Push as much as possible into input buffer */
+ size = BUFFERSIZE - is->bs;
+ if (size > length) size = (int) length;
+ i = is->bp + is->bs;
+
+ while (size-- > 0)
+ {
+ is->buffer[i++ & BUFFERMASK] = *buffer;
+ is->bs++;
+ buffer++;
+ length--;
+ }
+
+ /* Process some more data */
+ if (is->state == -1)
+ {
+ int e; /* last block flag */
+ unsigned t; /* block type */
+
+ ulg b; /* bit buffer */
+ unsigned k; /* number of bits in bit buffer */
+
+ /* make local copies of state */
+ b = is->bb; /* initialize bit buffer */
+ k = is->bk; /* initialize bit count */
+
+ TRY
+ {
+ /* read in last block bit */
+ NEEDBITS(1)
+ e = (int)b & 1;
+ DUMPBITS(1)
+
+ /* read in block type */
+ NEEDBITS(2)
+ t = (unsigned)b & 3;
+ DUMPBITS(2)
+
+ if (t <= 2)
+ {
+ is->state = t;
+ is->lastblock = e;
+ }
+ else
+ {
+ ERROREXIT(is);
+ }
+ }
+ CATCH_BEGIN
+ CATCH_END
+
+ /* restore the state from the locals */
+ is->bb = b; /* restore bit buffer */
+ is->bk = k; /* restore bit count */
+ }
+ else if (is->state == 0)
+ {
+ int ret;
+
+ ret = inflate_stored_setup(is);
+
+ if (ret > 0)
+ ERROREXIT(is);
+
+ if (ret == 0) is->state += 10;
+ }
+ else if (is->state == 1)
+ {
+ int ret;
+
+ ret = inflate_fixed_setup(is);
+
+ if (ret > 0)
+ ERROREXIT(is);
+
+ if (ret == 0) is->state += 10;
+ }
+ else if (is->state == 2)
+ {
+ int ret;
+
+ ret = inflate_dynamic_setup(is);
+
+ if (ret > 0)
+ ERROREXIT(is);
+
+ if (ret == 0) is->state += 10;
+ }
+ else if (is->state == 10)
+ {
+ int ret;
+
+ ret = inflate_stored(is);
+
+ if (ret > 0)
+ ERROREXIT(is);
+
+ if (ret == 0)
+ {
+ is->state = -1;
+ }
+ }
+ else if ((is->state == 11) ||
+ (is->state == 12) )
+ {
+ int ret;
+
+ ret = inflate_codes(is, is->tl, is->td, is->bl, is->bd);
+
+ if (ret > 0)
+ ERROREXIT(is);
+
+ if (ret == 0)
+ {
+ /* free the decoding tables */
+ huft_free(is, is->tl);
+ huft_free(is, is->td);
+ is->state = -1;
+ }
+ }
+ else
+ {
+ ERROREXIT(is);
+ }
+ }
+ while (length || (is->state != beginstate));
+
+ FLUSHWINDOW(is->wp, TRUE);
+
+ return is->errorencountered;
+}
+
+/* Routine to terminate inflate decompression */
+int InflateTerminate( /* returns 0 on success */
+ void *InflateState /* opaque ptr from Initialize */
+)
+{
+ int err;
+ void (*free_ptr)(void *buffer);
+
+ struct InflateState *is;
+
+ /* Get (and check) the InflateState structure */
+ is = (struct InflateState *) InflateState;
+ if (!is || (is->runtimetypeid1 != INFLATESTATETYPE)
+ || (is->runtimetypeid2 != INFLATESTATETYPE)) return TRUE;
+
+ /* save the error return */
+ err = is->errorencountered || (is->bs > 0)
+ || (is->state != -1)
+ || (!is->lastblock);
+
+ /* save the address of the free routine */
+ free_ptr = is->free_ptr;
+
+ /* Deallocate everything */
+ (*free_ptr)(is);
+
+ return err;
+}