/* * Copyright © 2008-2010 Stéphane Raimbault * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include "unit-test.h" enum { TCP, TCP_PI, RTU }; int main(int argc, char *argv[]) { uint8_t *tab_rp_bits; uint16_t *tab_rp_registers; uint16_t *tab_rp_registers_bad; modbus_t *ctx; int i; uint8_t value; int nb_points; int rc; float real; struct timeval old_response_timeout; struct timeval response_timeout; int use_backend; if (argc > 1) { if (strcmp(argv[1], "tcp") == 0) { use_backend = TCP; } else if (strcmp(argv[1], "tcppi") == 0) { use_backend = TCP_PI; } else if (strcmp(argv[1], "rtu") == 0) { use_backend = RTU; } else { printf("Usage:\n %s [tcp|tcppi|rtu] - Modbus client for unit testing\n\n", argv[0]); exit(1); } } else { /* By default */ use_backend = TCP; } if (use_backend == TCP) { ctx = modbus_new_tcp("127.0.0.1", 1502); } else if (use_backend == TCP_PI) { ctx = modbus_new_tcp_pi("::1", "1502"); } else { ctx = modbus_new_rtu("/dev/ttyUSB1", 115200, 'N', 8, 1); } if (ctx == NULL) { fprintf(stderr, "Unable to allocate libmodbus context\n"); return -1; } modbus_set_debug(ctx, TRUE); modbus_set_error_recovery(ctx, MODBUS_ERROR_RECOVERY_LINK | MODBUS_ERROR_RECOVERY_PROTOCOL); if (use_backend == RTU) { modbus_set_slave(ctx, SERVER_ID); } if (modbus_connect(ctx) == -1) { fprintf(stderr, "Connection failed: %s\n", modbus_strerror(errno)); modbus_free(ctx); return -1; } /* Allocate and initialize the memory to store the bits */ nb_points = (UT_BITS_NB > UT_INPUT_BITS_NB) ? UT_BITS_NB : UT_INPUT_BITS_NB; tab_rp_bits = (uint8_t *) malloc(nb_points * sizeof(uint8_t)); memset(tab_rp_bits, 0, nb_points * sizeof(uint8_t)); /* Allocate and initialize the memory to store the registers */ nb_points = (UT_REGISTERS_NB > UT_INPUT_REGISTERS_NB) ? UT_REGISTERS_NB : UT_INPUT_REGISTERS_NB; tab_rp_registers = (uint16_t *) malloc(nb_points * sizeof(uint16_t)); memset(tab_rp_registers, 0, nb_points * sizeof(uint16_t)); printf("** UNIT TESTING **\n"); printf("\nTEST WRITE/READ:\n"); /** COIL BITS **/ /* Single */ rc = modbus_write_bit(ctx, UT_BITS_ADDRESS, ON); printf("1/2 modbus_write_bit: "); if (rc == 1) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_read_bits(ctx, UT_BITS_ADDRESS, 1, tab_rp_bits); printf("2/2 modbus_read_bits: "); if (rc != 1) { printf("FAILED (nb points %d)\n", rc); goto close; } if (tab_rp_bits[0] != ON) { printf("FAILED (%0X = != %0X)\n", tab_rp_bits[0], ON); goto close; } printf("OK\n"); /* End single */ /* Multiple bits */ { uint8_t tab_value[UT_BITS_NB]; modbus_set_bits_from_bytes(tab_value, 0, UT_BITS_NB, UT_BITS_TAB); rc = modbus_write_bits(ctx, UT_BITS_ADDRESS, UT_BITS_NB, tab_value); printf("1/2 modbus_write_bits: "); if (rc == UT_BITS_NB) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } } rc = modbus_read_bits(ctx, UT_BITS_ADDRESS, UT_BITS_NB, tab_rp_bits); printf("2/2 modbus_read_bits: "); if (rc != UT_BITS_NB) { printf("FAILED (nb points %d)\n", rc); goto close; } i = 0; nb_points = UT_BITS_NB; while (nb_points > 0) { int nb_bits = (nb_points > 8) ? 8 : nb_points; value = modbus_get_byte_from_bits(tab_rp_bits, i*8, nb_bits); if (value != UT_BITS_TAB[i]) { printf("FAILED (%0X != %0X)\n", value, UT_BITS_TAB[i]); goto close; } nb_points -= nb_bits; i++; } printf("OK\n"); /* End of multiple bits */ /** DISCRETE INPUTS **/ rc = modbus_read_input_bits(ctx, UT_INPUT_BITS_ADDRESS, UT_INPUT_BITS_NB, tab_rp_bits); printf("1/1 modbus_read_input_bits: "); if (rc != UT_INPUT_BITS_NB) { printf("FAILED (nb points %d)\n", rc); goto close; } i = 0; nb_points = UT_INPUT_BITS_NB; while (nb_points > 0) { int nb_bits = (nb_points > 8) ? 8 : nb_points; value = modbus_get_byte_from_bits(tab_rp_bits, i*8, nb_bits); if (value != UT_INPUT_BITS_TAB[i]) { printf("FAILED (%0X != %0X)\n", value, UT_INPUT_BITS_TAB[i]); goto close; } nb_points -= nb_bits; i++; } printf("OK\n"); /** HOLDING REGISTERS **/ /* Single register */ rc = modbus_write_register(ctx, UT_REGISTERS_ADDRESS, 0x1234); printf("1/2 modbus_write_register: "); if (rc == 1) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, 1, tab_rp_registers); printf("2/2 modbus_read_registers: "); if (rc != 1) { printf("FAILED (nb points %d)\n", rc); goto close; } if (tab_rp_registers[0] != 0x1234) { printf("FAILED (%0X != %0X)\n", tab_rp_registers[0], 0x1234); goto close; } printf("OK\n"); /* End of single register */ /* Many registers */ rc = modbus_write_registers(ctx, UT_REGISTERS_ADDRESS, UT_REGISTERS_NB, UT_REGISTERS_TAB); printf("1/5 modbus_write_registers: "); if (rc == UT_REGISTERS_NB) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, UT_REGISTERS_NB, tab_rp_registers); printf("2/5 modbus_read_registers: "); if (rc != UT_REGISTERS_NB) { printf("FAILED (nb points %d)\n", rc); goto close; } for (i=0; i < UT_REGISTERS_NB; i++) { if (tab_rp_registers[i] != UT_REGISTERS_TAB[i]) { printf("FAILED (%0X != %0X)\n", tab_rp_registers[i], UT_REGISTERS_TAB[i]); goto close; } } printf("OK\n"); rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, 0, tab_rp_registers); printf("3/5 modbus_read_registers (0): "); if (rc != 0) { printf("FAILED (nb points %d)\n", rc); goto close; } printf("OK\n"); nb_points = (UT_REGISTERS_NB > UT_INPUT_REGISTERS_NB) ? UT_REGISTERS_NB : UT_INPUT_REGISTERS_NB; memset(tab_rp_registers, 0, nb_points * sizeof(uint16_t)); /* Write registers to zero from tab_rp_registers and store read registers into tab_rp_registers. So the read registers must set to 0, except the first one because there is an offset of 1 register on write. */ rc = modbus_write_and_read_registers(ctx, UT_REGISTERS_ADDRESS + 1, UT_REGISTERS_NB - 1, tab_rp_registers, UT_REGISTERS_ADDRESS, UT_REGISTERS_NB, tab_rp_registers); printf("4/5 modbus_write_and_read_registers: "); if (rc != UT_REGISTERS_NB) { printf("FAILED (nb points %d != %d)\n", rc, UT_REGISTERS_NB); goto close; } if (tab_rp_registers[0] != UT_REGISTERS_TAB[0]) { printf("FAILED (%0X != %0X)\n", tab_rp_registers[0], UT_REGISTERS_TAB[0]); } for (i=1; i < UT_REGISTERS_NB; i++) { if (tab_rp_registers[i] != 0) { printf("FAILED (%0X != %0X)\n", tab_rp_registers[i], 0); goto close; } } printf("OK\n"); /* End of many registers */ /** INPUT REGISTERS **/ rc = modbus_read_input_registers(ctx, UT_INPUT_REGISTERS_ADDRESS, UT_INPUT_REGISTERS_NB, tab_rp_registers); printf("1/1 modbus_read_input_registers: "); if (rc != UT_INPUT_REGISTERS_NB) { printf("FAILED (nb points %d)\n", rc); goto close; } for (i=0; i < UT_INPUT_REGISTERS_NB; i++) { if (tab_rp_registers[i] != UT_INPUT_REGISTERS_TAB[i]) { printf("FAILED (%0X != %0X)\n", tab_rp_registers[i], UT_INPUT_REGISTERS_TAB[i]); goto close; } } printf("OK\n"); printf("\nTEST FLOATS\n"); /** FLOAT **/ printf("1/2 Set float: "); modbus_set_float(UT_REAL, tab_rp_registers); if (tab_rp_registers[1] == (UT_IREAL >> 16) && tab_rp_registers[0] == (UT_IREAL & 0xFFFF)) { printf("OK\n"); } else { printf("FAILED (%x != %x)\n", *((uint32_t *)tab_rp_registers), UT_IREAL); goto close; } printf("2/2 Get float: "); real = modbus_get_float(tab_rp_registers); if (real == UT_REAL) { printf("OK\n"); } else { printf("FAILED (%f != %f)\n", real, UT_REAL); goto close; } printf("\nAt this point, error messages doesn't mean the test has failed\n"); /** ILLEGAL DATA ADDRESS **/ printf("\nTEST ILLEGAL DATA ADDRESS:\n"); /* The mapping begins at 0 and ends at address + nb_points so * the addresses are not valid. */ rc = modbus_read_bits(ctx, UT_BITS_ADDRESS, UT_BITS_NB + 1, tab_rp_bits); printf("* modbus_read_bits: "); if (rc == -1 && errno == EMBXILADD) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_read_input_bits(ctx, UT_INPUT_BITS_ADDRESS, UT_INPUT_BITS_NB + 1, tab_rp_bits); printf("* modbus_read_input_bits: "); if (rc == -1 && errno == EMBXILADD) printf("OK\n"); else { printf("FAILED\n"); goto close; } rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, UT_REGISTERS_NB + 1, tab_rp_registers); printf("* modbus_read_registers: "); if (rc == -1 && errno == EMBXILADD) printf("OK\n"); else { printf("FAILED\n"); goto close; } rc = modbus_read_input_registers(ctx, UT_INPUT_REGISTERS_ADDRESS, UT_INPUT_REGISTERS_NB + 1, tab_rp_registers); printf("* modbus_read_input_registers: "); if (rc == -1 && errno == EMBXILADD) printf("OK\n"); else { printf("FAILED\n"); goto close; } rc = modbus_write_bit(ctx, UT_BITS_ADDRESS + UT_BITS_NB, ON); printf("* modbus_write_bit: "); if (rc == -1 && errno == EMBXILADD) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_write_bits(ctx, UT_BITS_ADDRESS + UT_BITS_NB, UT_BITS_NB, tab_rp_bits); printf("* modbus_write_coils: "); if (rc == -1 && errno == EMBXILADD) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_write_registers(ctx, UT_REGISTERS_ADDRESS + UT_REGISTERS_NB, UT_REGISTERS_NB, tab_rp_registers); printf("* modbus_write_registers: "); if (rc == -1 && errno == EMBXILADD) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } /** TOO MANY DATA **/ printf("\nTEST TOO MANY DATA ERROR:\n"); rc = modbus_read_bits(ctx, UT_BITS_ADDRESS, MODBUS_MAX_READ_BITS + 1, tab_rp_bits); printf("* modbus_read_bits: "); if (rc == -1 && errno == EMBMDATA) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_read_input_bits(ctx, UT_INPUT_BITS_ADDRESS, MODBUS_MAX_READ_BITS + 1, tab_rp_bits); printf("* modbus_read_input_bits: "); if (rc == -1 && errno == EMBMDATA) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, MODBUS_MAX_READ_REGISTERS + 1, tab_rp_registers); printf("* modbus_read_registers: "); if (rc == -1 && errno == EMBMDATA) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_read_input_registers(ctx, UT_INPUT_REGISTERS_ADDRESS, MODBUS_MAX_READ_REGISTERS + 1, tab_rp_registers); printf("* modbus_read_input_registers: "); if (rc == -1 && errno == EMBMDATA) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } rc = modbus_write_bits(ctx, UT_BITS_ADDRESS, MODBUS_MAX_WRITE_BITS + 1, tab_rp_bits); printf("* modbus_write_bits: "); if (rc == -1 && errno == EMBMDATA) { printf("OK\n"); } else { goto close; printf("FAILED\n"); } rc = modbus_write_registers(ctx, UT_REGISTERS_ADDRESS, MODBUS_MAX_WRITE_REGISTERS + 1, tab_rp_registers); printf("* modbus_write_registers: "); if (rc == -1 && errno == EMBMDATA) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } /** SLAVE REPLY **/ printf("\nTEST SLAVE REPLY:\n"); modbus_set_slave(ctx, INVALID_SERVER_ID); rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, UT_REGISTERS_NB, tab_rp_registers); if (use_backend == RTU) { const int RAW_REQ_LENGTH = 6; uint8_t raw_req[] = { INVALID_SERVER_ID, 0x03, 0x00, 0x01, 0xFF, 0xFF }; uint8_t rsp[MODBUS_TCP_MAX_ADU_LENGTH]; /* No response in RTU mode */ printf("1/4-A No response from slave %d: ", INVALID_SERVER_ID); if (rc == -1 && errno == ETIMEDOUT) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } /* Send an invalid query with a wrong slave ID */ modbus_send_raw_request(ctx, raw_req, RAW_REQ_LENGTH * sizeof(uint8_t)); rc = modbus_receive_confirmation(ctx, rsp); printf("1/4-B No response from slave %d with invalid request: ", INVALID_SERVER_ID); if (rc == -1 && errno == ETIMEDOUT) { printf("OK\n"); } else { printf("FAILED (%d)\n", rc); goto close; } } else { /* Response in TCP mode */ printf("1/4 Response from slave %d: ", 18); if (rc == UT_REGISTERS_NB) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } } rc = modbus_set_slave(ctx, MODBUS_BROADCAST_ADDRESS); if (rc == -1) { printf("Invalid broacast address\n"); goto close; } rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, UT_REGISTERS_NB, tab_rp_registers); printf("2/4 Reply after a broadcast query: "); if (rc == UT_REGISTERS_NB) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } /* Restore slave */ if (use_backend == RTU) { modbus_set_slave(ctx, SERVER_ID); } else { modbus_set_slave(ctx, MODBUS_TCP_SLAVE); } printf("3/4 Report slave ID: \n"); /* tab_rp_bits is used to store bytes */ rc = modbus_report_slave_id(ctx, tab_rp_bits); if (rc == -1) { printf("FAILED\n"); goto close; } /* Slave ID is an arbitraty number for libmodbus */ if (rc > 0) { printf("OK Slave ID is %d\n", tab_rp_bits[0]); } else { printf("FAILED\n"); goto close; } /* Run status indicator */ if (rc > 1 && tab_rp_bits[1] == 0xFF) { printf("OK Run Status Indicator is %s\n", tab_rp_bits[1] ? "ON" : "OFF"); } else { printf("FAILED\n"); goto close; } /* Print additional data as string */ if (rc > 2) { printf("Additional data: "); for (i=2; i < rc; i++) { printf("%c", tab_rp_bits[i]); } printf("\n"); } /* Save original timeout */ modbus_get_response_timeout(ctx, &old_response_timeout); /* Define a new and too short timeout */ response_timeout.tv_sec = 0; response_timeout.tv_usec = 0; modbus_set_response_timeout(ctx, &response_timeout); rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, UT_REGISTERS_NB, tab_rp_registers); printf("4/4 Too short timeout: "); if (rc == -1 && errno == ETIMEDOUT) { printf("OK\n"); } else { printf("FAILED (can fail on slow systems or Windows)\n"); } /* Restore original timeout */ modbus_set_response_timeout(ctx, &old_response_timeout); /* A wait and flush operation is done by the error recovery code of * libmodbus */ /** BAD RESPONSE **/ printf("\nTEST BAD RESPONSE ERROR:\n"); /* Allocate only the required space */ tab_rp_registers_bad = (uint16_t *) malloc( UT_REGISTERS_NB_SPECIAL * sizeof(uint16_t)); rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS, UT_REGISTERS_NB_SPECIAL, tab_rp_registers_bad); printf("* modbus_read_registers: "); if (rc == -1 && errno == EMBBADDATA) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } free(tab_rp_registers_bad); /** MANUAL EXCEPTION **/ printf("\nTEST MANUAL EXCEPTION:\n"); rc = modbus_read_registers(ctx, UT_REGISTERS_ADDRESS_SPECIAL, UT_REGISTERS_NB, tab_rp_registers); printf("* modbus_read_registers at special address: "); if (rc == -1 && errno == EMBXSBUSY) { printf("OK\n"); } else { printf("FAILED\n"); goto close; } /** RAW REQUEST */ printf("\nTEST RAW REQUEST:\n"); { const int RAW_REQ_LENGTH = 6; uint8_t raw_req[] = { (use_backend == RTU) ? SERVER_ID : 0xFF, 0x03, 0x00, 0x01, 0x0, 0x05 }; int req_length; uint8_t rsp[MODBUS_TCP_MAX_ADU_LENGTH]; req_length = modbus_send_raw_request(ctx, raw_req, RAW_REQ_LENGTH * sizeof(uint8_t)); printf("* modbus_send_raw_request: "); if ((use_backend == RTU && req_length == (RAW_REQ_LENGTH + 2)) || ((use_backend == TCP || use_backend == TCP_PI) && req_length == (RAW_REQ_LENGTH + 6))) { printf("OK\n"); } else { printf("FAILED (%d)\n", req_length); goto close; } printf("* modbus_receive_confirmation: "); rc = modbus_receive_confirmation(ctx, rsp); if ((use_backend == RTU && rc == 15) || ((use_backend == TCP || use_backend == TCP_PI) && rc == 19)) { printf("OK\n"); } else { printf("FAILED (%d)\n", rc); goto close; } } printf("\nALL TESTS PASS WITH SUCCESS.\n"); close: /* Free the memory */ free(tab_rp_bits); free(tab_rp_registers); /* Close the connection */ modbus_close(ctx); modbus_free(ctx); return 0; } n class="o">() { eval 'cat <<_LTECHO_EOF $1 _LTECHO_EOF' } ECHO="printf %s\\n" fi # Very basic option parsing. These options are (a) specific to # the libtool wrapper, (b) are identical between the wrapper # /script/ and the wrapper /executable/ which is used only on # windows platforms, and (c) all begin with the string --lt- # (application programs are unlikely to have options which match # this pattern). # # There are only two supported options: --lt-debug and # --lt-dump-script. There is, deliberately, no --lt-help. # # The first argument to this parsing function should be the # script's ../libtool value, followed by no. lt_option_debug= func_parse_lt_options () { lt_script_arg0=$0 shift for lt_opt do case "$lt_opt" in --lt-debug) lt_option_debug=1 ;; --lt-dump-script) lt_dump_D=`$ECHO "X$lt_script_arg0" | /bin/sed -e 's/^X//' -e 's%/[^/]*$%%'` test "X$lt_dump_D" = "X$lt_script_arg0" && lt_dump_D=. lt_dump_F=`$ECHO "X$lt_script_arg0" | /bin/sed -e 's/^X//' -e 's%^.*/%%'` cat "$lt_dump_D/$lt_dump_F" exit 0 ;; --lt-*) $ECHO "Unrecognized --lt- option: '$lt_opt'" 1>&2 exit 1 ;; esac done # Print the debug banner immediately: if test -n "$lt_option_debug"; then echo "version:version:${LINENO}: libtool wrapper (GNU libtool) 2.4 Debian-2.4-3" 1>&2 fi } # Used when --lt-debug. Prints its arguments to stdout # (redirection is the responsibility of the caller) func_lt_dump_args () { lt_dump_args_N=1; for lt_arg do $ECHO "version:version:${LINENO}: newargv[$lt_dump_args_N]: $lt_arg" lt_dump_args_N=`expr $lt_dump_args_N + 1` done } # Core function for launching the target application func_exec_program_core () { if test -n "$lt_option_debug"; then $ECHO "version:version:${LINENO}: newargv[0]: $progdir/$program" 1>&2 func_lt_dump_args ${1+"$@"} 1>&2 fi exec "$progdir/$program" ${1+"$@"} $ECHO "$0: cannot exec $program $*" 1>&2 exit 1 } # A function to encapsulate launching the target application # Strips options in the --lt-* namespace from $@ and # launches target application with the remaining arguments. func_exec_program () { for lt_wr_arg do case $lt_wr_arg in --lt-*) ;; *) set x "$@" "$lt_wr_arg"; shift;; esac shift done func_exec_program_core ${1+"$@"} } # Parse options func_parse_lt_options "$0" ${1+"$@"} # Find the directory that this script lives in. thisdir=`$ECHO "$file" | /bin/sed 's%/[^/]*$%%'` test "x$thisdir" = "x$file" && thisdir=. # Follow symbolic links until we get to the real thisdir. file=`ls -ld "$file" | /bin/sed -n 's/.*-> //p'` while test -n "$file"; do destdir=`$ECHO "$file" | /bin/sed 's%/[^/]*$%%'` # If there was a directory component, then change thisdir. if test "x$destdir" != "x$file"; then case "$destdir" in [\\/]* | [A-Za-z]:[\\/]*) thisdir="$destdir" ;; *) thisdir="$thisdir/$destdir" ;; esac fi file=`$ECHO "$file" | /bin/sed 's%^.*/%%'` file=`ls -ld "$thisdir/$file" | /bin/sed -n 's/.*-> //p'` done # Usually 'no', except on cygwin/mingw when embedded into # the cwrapper. WRAPPER_SCRIPT_BELONGS_IN_OBJDIR=no if test "$WRAPPER_SCRIPT_BELONGS_IN_OBJDIR" = "yes"; then # special case for '.' if test "$thisdir" = "."; then thisdir=`pwd` fi # remove .libs from thisdir case "$thisdir" in *[\\/].libs ) thisdir=`$ECHO "$thisdir" | /bin/sed 's%[\\/][^\\/]*$%%'` ;; .libs ) thisdir=. ;; esac fi # Try to get the absolute directory name. absdir=`cd "$thisdir" && pwd` test -n "$absdir" && thisdir="$absdir" program=lt-'version' progdir="$thisdir/.libs" if test ! -f "$progdir/$program" || { file=`ls -1dt "$progdir/$program" "$progdir/../$program" 2>/dev/null | /bin/sed 1q`; \ test "X$file" != "X$progdir/$program"; }; then file="$$-$program" if test ! -d "$progdir"; then mkdir "$progdir" else rm -f "$progdir/$file" fi # relink executable if necessary if test -n "$relink_command"; then if relink_command_output=`eval $relink_command 2>&1`; then : else printf %s\n "$relink_command_output" >&2 rm -f "$progdir/$file" exit 1 fi fi mv -f "$progdir/$file" "$progdir/$program" 2>/dev/null || { rm -f "$progdir/$program"; mv -f "$progdir/$file" "$progdir/$program"; } rm -f "$progdir/$file" fi if test -f "$progdir/$program"; then if test "$libtool_execute_magic" != "%%%MAGIC variable%%%"; then # Run the actual program with our arguments. func_exec_program ${1+"$@"} fi else # The program doesn't exist. $ECHO "$0: error: \`$progdir/$program' does not exist" 1>&2 $ECHO "This script is just a wrapper for $program." 1>&2 $ECHO "See the libtool documentation for more information." 1>&2 exit 1 fi fi