aboutsummaryrefslogtreecommitdiffstats
path: root/cphidgetspatial.c
blob: 463d3abf9d4cbb8a9543ff36092c44ac1229776e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#ifndef CPHIDGET_CONSTANTS
#define CPHIDGET_CONSTANTS

/** \defgroup phidconst Phidget Constants 
 * Various constants used throughout the library.
 * @{
 */

/** \name Phidget States
 * Returned by getStatus() functions
 * @{
 */
#define PHIDGET_ATTACHED				0x1 /**< Phidget attached */
#define PHIDGET_NOTATTACHED				0x0 /**< Phidget not attached */
/** @} */

//Adding error codes: Update .NET, COM, Python, Java
/** \name Phidget Error Codes
 * Returned by all C API calls
 * @{
 */
#define	PHIDGET_ERROR_CODE_COUNT		20
#define EPHIDGET_OK						0	/**< Function completed successfully. */
#define EPHIDGET_NOTFOUND				1	/**< Phidget not found. "A Phidget matching the type and or serial number could not be found." */
#define EPHIDGET_NOMEMORY				2	/**< No memory. "Memory could not be allocated." */
#define EPHIDGET_UNEXPECTED				3	/**< Unexpected. "Unexpected Error. Contact Phidgets Inc. for support." */
#define EPHIDGET_INVALIDARG				4	/**< Invalid argument. "Invalid argument passed to function." */
#define EPHIDGET_NOTATTACHED			5	/**< Phidget not attached. "Phidget not physically attached." */
#define EPHIDGET_INTERRUPTED			6	/**< Interrupted. "Read/Write operation was interrupted." This code is not currently used. */
#define EPHIDGET_INVALID				7	/**< Invalid error code. "The Error Code is not defined." */
#define EPHIDGET_NETWORK				8	/**< Network. "Network Error." */
#define EPHIDGET_UNKNOWNVAL				9	/**< Value unknown. "Value is Unknown (State not yet received from device, or not yet set by user)." */
#define EPHIDGET_BADPASSWORD			10	/**< Authorization exception. "No longer used. Replaced by EEPHIDGET_BADPASSWORD" */
#define EPHIDGET_UNSUPPORTED			11	/**< Unsupported. "Not Supported." */
#define EPHIDGET_DUPLICATE				12	/**< Duplicate request. "Duplicated request." */
#define EPHIDGET_TIMEOUT				13	/**< Timeout. "Given timeout has been exceeded." */
#define EPHIDGET_OUTOFBOUNDS			14	/**< Out of bounds. "Index out of Bounds." */
#define EPHIDGET_EVENT					15	/**< Event. "A non-null error code was returned from an event handler." This code is not currently used. */
#define EPHIDGET_NETWORK_NOTCONNECTED	16	/**< Network not connected. "A connection to the server does not exist." */
#define EPHIDGET_WRONGDEVICE			17	/**< Wrong device. "Function is not applicable for this device." */
#define EPHIDGET_CLOSED					18	/**< Phidget Closed. "Phidget handle was closed." */
#define EPHIDGET_BADVERSION				19	/**< Version Mismatch. "No longer used. Replaced by EEPHIDGET_BADVERSION" */
/** @} */

//Adding error codes: Update .NET, COM, Python, Java
/** \name Phidget Error Event Codes
 * Returned in the Phidget error event
 * @{
 */
#define EEPHIDGET_EVENT_ERROR(code) (0x8000 + code)


//Library errors
#define EEPHIDGET_NETWORK		EEPHIDGET_EVENT_ERROR(0x0001)	/**< Network Error (asynchronous). */
#define EEPHIDGET_BADPASSWORD	EEPHIDGET_EVENT_ERROR(0x0002)	/**< Authorization Failed. */
#define EEPHIDGET_BADVERSION	EEPHIDGET_EVENT_ERROR(0x0003)	/**< Webservice and Client protocol versions don't match. Update to newest release. */

//Errors streamed back from firmware
#define EEPHIDGET_OK			EEPHIDGET_EVENT_ERROR(0x1000)	/**< An error state has ended - see description for details. */
#define EEPHIDGET_OVERRUN		EEPHIDGET_EVENT_ERROR(0x1002)	/**< A sampling overrun happend in firmware. */
#define EEPHIDGET_PACKETLOST	EEPHIDGET_EVENT_ERROR(0x1003)	/**< One or more packets were lost. */
#define EEPHIDGET_WRAP			EEPHIDGET_EVENT_ERROR(0x1004)	/**< A variable has wrapped around. */
#define EEPHIDGET_OVERTEMP		EEPHIDGET_EVENT_ERROR(0x1005)	/**< Overtemperature condition detected. */
#define EEPHIDGET_OVERCURRENT	EEPHIDGET_EVENT_ERROR(0x1006)	/**< Overcurrent condition detected. */
#define EEPHIDGET_OUTOFRANGE	EEPHIDGET_EVENT_ERROR(0x1007)	/**< Out of range condition detected. */
#define EEPHIDGET_BADPOWER		EEPHIDGET_EVENT_ERROR(0x1008)	/**< Power supply problem detected. */

/** @} */

/** \name Phidget Unknown Constants
 * Data values will be set to these constants when a call fails with \ref EPHIDGET_UNKNOWNVAL.
 * @{
 */
#define PUNK_BOOL	0x02					/**< Unknown Boolean (unsigned char) */
#define PUNK_SHRT	0x7FFF					/**< Unknown Short	 (16-bit) */
#define PUNK_INT	0x7FFFFFFF				/**< Unknown Integer (32-bit) */
#define PUNK_INT64	0x7FFFFFFFFFFFFFFFLL	/**< Unknown Integer (64-bit) */
#define PUNK_DBL	1e300					/**< Unknown Double */
#define PUNK_FLT	1e30					/**< Unknown Float */
/** @} */

#define PFALSE		0x00	/**< False. Used for boolean values. */
#define PTRUE		0x01	/**< True. Used for boolean values. */

/** @} */

#endif
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
#include "stdafx.h"
#include "cphidgetspatial.h"
#include "cusb.h"
#include "math.h"
#include "csocket.h"
#include "cthread.h"

// === Internal Functions === //
static double getCorrectedField(CPhidgetSpatialHandle phid, double fields[], int axis);

//clearVars - sets all device variables to unknown state
CPHIDGETCLEARVARS(Spatial)
	int i = 0;

	phid->dataRateMin = PUNI_INT;
	phid->dataRate = PUNI_INT;
	phid->dataRateMax = PUNI_INT;

	phid->accelerationMax = PUNI_DBL;
	phid->accelerationMin = PUNI_DBL;
	phid->angularRateMax = PUNI_DBL;
	phid->angularRateMin = PUNI_DBL;
	phid->magneticFieldMax = PUNI_DBL;
	phid->magneticFieldMin = PUNI_DBL;
	phid->interruptRate = PUNI_INT;

	phid->spatialDataNetwork = PUNI_BOOL;

	for (i = 0; i<SPATIAL_MAX_ACCELAXES; i++)
	{
		phid->accelAxis[i] = PUNI_DBL;
	}
	for (i = 0; i<SPATIAL_MAX_GYROAXES; i++)
	{
		phid->gyroAxis[i] = PUNI_DBL;
	}
	for (i = 0; i<SPATIAL_MAX_COMPASSAXES; i++)
	{
		phid->compassAxis[i] = PUNI_DBL;
	}
	return EPHIDGET_OK;
}

//initAfterOpen - sets up the initial state of an object, reading in packets from the device if needed
//				  used during attach initialization - on every attach
CPHIDGETINIT(Spatial)
	int i = 0;

	TESTPTR(phid);

	//Setup max/min values
	switch(phid->phid.deviceUID)
	{
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1049:
			phid->accelerationMax = 5.1;
			phid->accelerationMin = -5.1;
			phid->interruptRate = 8;
			phid->dataRateMin = SPATIAL_MIN_DATA_RATE;
			phid->dataRate = phid->interruptRate;
			phid->dataRateMax = 1; //actual data rate
			phid->angularRateMax = 0;
			phid->angularRateMin = 0;
			phid->magneticFieldMax = 0;
			phid->magneticFieldMin = 0;
			phid->calDataValid = PFALSE;
			break;

		case PHIDUID_SPATIAL_ACCEL_3AXIS_1041:
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1043:
			phid->accelerationMax = 8.1;
			phid->accelerationMin = -8.1;
			phid->interruptRate = 8;
			phid->dataRateMin = SPATIAL_MIN_DATA_RATE;
			phid->dataRate = phid->interruptRate;
			phid->dataRateMax = 1; //actual data rate
			phid->angularRateMax = 0;
			phid->angularRateMin = 0;
			phid->magneticFieldMax = 0;
			phid->magneticFieldMin = 0;
			phid->calDataValid = PFALSE;
			break;

		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056_NEG_GAIN:
			phid->accelerationMax = 5.1;
			phid->accelerationMin = -5.1;
			phid->interruptRate = 8;
			phid->dataRateMin = SPATIAL_MIN_DATA_RATE;
			phid->dataRate = phid->interruptRate;
			phid->dataRateMax = 4; //actual data rate
			phid->angularRateMax = 400.1;
			phid->angularRateMin = -400.1;
			phid->magneticFieldMax = 4.1;
			phid->magneticFieldMin = -4.1;
			phid->userMagField = 1.0;
			phid->calDataValid = PFALSE;
			break;

		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
			phid->accelerationMax = 8.1;
			phid->accelerationMin = -8.1;
			phid->interruptRate = 4;
			phid->dataRateMin = SPATIAL_MIN_DATA_RATE;
			phid->dataRate = 8;
			phid->dataRateMax = 4; //actual data rate
			phid->angularRateMax = 2000.1;
			phid->angularRateMin = -2000.1;
			phid->magneticFieldMax = 5.6;
			phid->magneticFieldMin = -5.6;
			phid->userMagField = 1.0;
			phid->calDataValid = PFALSE;
			break;

		default:
			return EPHIDGET_UNEXPECTED;
	}

	//initialize triggers, set data arrays to unknown
	for (i = 0; i<phid->phid.attr.spatial.numAccelAxes; i++)
	{
		phid->accelAxis[i] = PUNK_DBL;
		phid->accelGain1[i] = PUNK_DBL;
		phid->accelGain2[i] = PUNK_DBL;
		phid->accelOffset[i] = PUNK_INT;
	}
	for (i = 0; i<phid->phid.attr.spatial.numGyroAxes; i++)
	{
		phid->gyroAxis[i] = PUNK_DBL;
		phid->gryoCorrection[i] = 0;
		phid->gyroGain1[i] = PUNK_DBL;
		phid->gyroGain2[i] = PUNK_DBL;
		phid->gyroOffset[i] = PUNK_INT;
	}
	for (i = 0; i<phid->phid.attr.spatial.numCompassAxes; i++)
	{
		phid->compassAxis[i] = PUNK_DBL;
		phid->userCompassGain[i] = 1.0;
	}
	phid->bufferReadPtr = 0;
	phid->bufferWritePtr = 0;
	phid->timestamp.seconds = 0;
	phid->timestamp.microseconds = 0;
	phid->lastEventTime.seconds = 0;
	phid->lastEventTime.microseconds = 0;
	phid->latestDataTime.seconds = 0;
	phid->latestDataTime.microseconds = 0;

	phid->lastTimeCounterValid = PFALSE;
	phid->doZeroGyro = PFALSE;

	//get calibration values
	switch(phid->phid.deviceUID) {
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1049:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056_NEG_GAIN:
			{
				unsigned char buffer[8] = { 0 };
				int result;
				int readCount = 125; // up to 1 second of data - should be PLENTY
				//ask for calibration values
				buffer[0] = SPATIAL_READCALIB;
				if ((result = CUSBSendPacket((CPhidgetHandle)phid, buffer)) != EPHIDGET_OK)
					return result;
				while(phid->calDataValid == PFALSE && readCount--)
				{
					//note that Windows queues up to 32 packets, so we need to read at least this many to get the calibration packet
					CPhidget_read((CPhidgetHandle)phid);
				}
				if(!phid->calDataValid)
					return EPHIDGET_UNEXPECTED;
			}
			break;
		// No streamed Calibration
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1041:
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1043:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
		default:
			break;
	}

	//issue one read
	//this should fill in the data because the dataRate is the interrupt rate
	CPhidget_read((CPhidgetHandle)phid);

	return EPHIDGET_OK;
}

static void updateTimestamp(CPhidgetSpatialHandle phid, int time)
{
	if(phid->lastTimeCounterValid)
	{
		//1-255 ms
		int timechange = (unsigned short)((unsigned short)time - (unsigned short)phid->lastTimeCounter);
		timechange *= 1000; //us

		//if(timechange > 500000)
		//	LOG(PHIDGET_LOG_DEBUG, "Timechange: %d",timechange);

		phid->timestamp.seconds = phid->timestamp.seconds + (phid->timestamp.microseconds + timechange) / 1000000;
		phid->timestamp.microseconds = (phid->timestamp.microseconds + timechange) % 1000000;
	}
	else
	{
		phid->lastTimeCounterValid = PTRUE;
	}
	phid->lastTimeCounter = time;
}

static void updateLatestDataTime(CPhidgetSpatialHandle phid, int i)
{
	phid->latestDataTime.seconds = phid->timestamp.seconds + (phid->timestamp.microseconds + (i + 1) * phid->dataRateMax * 1000) / 1000000;
	phid->latestDataTime.microseconds = (phid->timestamp.microseconds + (i + 1) * phid->dataRateMax * 1000) % 1000000;
}

//dataInput - parses device packets
CPHIDGETDATA(Spatial)
	int i = 0, j = 0, count = 0, dataRate = phid->dataRate, cal;
	unsigned char doneGyroZero = PFALSE;
	double accelAvg[SPATIAL_MAX_ACCELAXES], angularRateAvg[SPATIAL_MAX_ACCELAXES], magneticFieldAvg[SPATIAL_MAX_ACCELAXES], magneticFieldCorr[SPATIAL_MAX_ACCELAXES];
	CPhidgetSpatial_SpatialEventDataHandle *eventData;
	
	ZEROMEM(accelAvg, sizeof(accelAvg));
	ZEROMEM(angularRateAvg, sizeof(angularRateAvg));
	ZEROMEM(magneticFieldAvg, sizeof(magneticFieldAvg));

	if (length<0) return EPHIDGET_INVALIDARG;
	TESTPTR(phid);
	TESTPTR(buffer);

	//Parse device packets - store data locally
	switch(phidG->deviceUID)
	{
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1049:
		{
			int data;
			double accelUncalib[3] = {0,0,0};
			int time;
			
			//top 2 bits in buffer[0] are packet type
			switch(buffer[0] & 0xc0)
			{
				case SPATIAL_PACKET_DATA:
					if(phid->calDataValid)
					{
						count = buffer[0] / 3;
						if(count == 0)
							goto done;

						//this timestamp is for the latest data
						time = ((unsigned short)buffer[1]<<8) + (unsigned short)buffer[2];
						if(phid->lastTimeCounterValid)
						{
							//0-255 ms
							int timechange = (unsigned short)((unsigned short)time - (unsigned short)phid->lastTimeCounter);
							timechange *= 1000; //us

							phid->timestamp.seconds = phid->timestamp.seconds + (phid->timestamp.microseconds + timechange) / 1000000;
							phid->timestamp.microseconds = (phid->timestamp.microseconds + timechange) % 1000000;
						}
						else
						{
							phid->lastTimeCounterValid = PTRUE;
						}
						phid->lastTimeCounter = time;

						//add data to data buffer
						for(i=0;i<count;i++)
						{
							//LIS344ALH - Vdd/15 V/g - 0x1fff/15 = 0x222 (546.06666666666666666666666666667)
							for(j=0;j<3;j++)
							{
								data = ((unsigned short)buffer[3 + j * 2 + i * 6]<<8) + (unsigned short)buffer[4 + j * 2 + i * 6];
								accelUncalib[j] = ((double)data - 0x0fff) / 546.066667;
							}
							accelUncalib[1] = -accelUncalib[1]; //reverse Y-axis
							//Apply offsets
							for(j=0;j<3;j++)
							{
								accelUncalib[j] -= phid->accelOffset[j];
							}
							//X
							if(accelUncalib[0] > 0)
								phid->dataBuffer[phid->bufferWritePtr].acceleration[0] = accelUncalib[0] * phid->accelGain1[0] + accelUncalib[1] * phid->accelFactor1[0] + accelUncalib[2] * phid->accelFactor2[0];
							else
								phid->dataBuffer[phid->bufferWritePtr].acceleration[0] = accelUncalib[0] * phid->accelGain2[0] + accelUncalib[1] * phid->accelFactor1[0] + accelUncalib[2] * phid->accelFactor2[0];
							//Y
							if(accelUncalib[1] > 0)
								phid->dataBuffer[phid->bufferWritePtr].acceleration[1] = accelUncalib[1] * phid->accelGain1[1] + accelUncalib[0] * phid->accelFactor1[1] + accelUncalib[2] * phid->accelFactor2[1];
							else
								phid->dataBuffer[phid->bufferWritePtr].acceleration[1] = accelUncalib[1] * phid->accelGain2[1] + accelUncalib[0] * phid->accelFactor1[1] + accelUncalib[2] * phid->accelFactor2[1];
							//Z
							if(accelUncalib[2] > 0)
								phid->dataBuffer[phid->bufferWritePtr].acceleration[2] = accelUncalib[2] * phid->accelGain1[2] + accelUncalib[0] * phid->accelFactor1[2] + accelUncalib[1] * phid->accelFactor2[2];
							else
								phid->dataBuffer[phid->bufferWritePtr].acceleration[2] = accelUncalib[2] * phid->accelGain2[2] + accelUncalib[0] * phid->accelFactor1[2] + accelUncalib[1] * phid->accelFactor2[2];

							updateLatestDataTime(phid, i);

							phid->dataBuffer[phid->bufferWritePtr].timestamp = phid->latestDataTime;

							phid->bufferWritePtr++;
							if(phid->bufferWritePtr >= SPATIAL_DATA_BUFFER_SIZE)
								phid->bufferWritePtr = 0;
						}
					}
					break;
				case SPATIAL_PACKET_CALIB:
					for (i = 0; i<phid->phid.attr.spatial.numAccelAxes; i++)
					{
						cal = ((unsigned short)buffer[i*7 + 1]<<4) + ((unsigned short)buffer[i*7 + 2]>>4);
						phid->accelGain1[i] = cal / (4096/0.4) + 0.8;
						cal = (((unsigned short)buffer[i*7 + 2]<<8) & 0x0F00) | ((unsigned short)buffer[i*7 + 3]);
						phid->accelGain2[i] = cal / (4096/0.4) + 0.8;
						cal = (unsigned short)((unsigned short)buffer[i*7 + 4]<<8) + (unsigned short)buffer[i*7 + 5];
						phid->accelOffset[i] = cal / (65535 / 1.0) - 0.5;
						cal = (unsigned char)buffer[i*7 + 6];
						phid->accelFactor1[i] = cal / (256 / 0.2) - 0.1;
						cal = (unsigned char)buffer[i*7 + 7];
						phid->accelFactor2[i] = cal / (256 / 0.2) - 0.1;
						//LOG(PHIDGET_LOG_INFO, "Accel(%d) Calib: %1.4lf, %1.4lf, %1.4lf, %1.4lf, %1.4lf", i, 
						//	phid->accelGain1[i], phid->accelGain2[i], phid->accelOffset[i], phid->accelFactor1[i], phid->accelFactor2[i]);
					}
					phid->calDataValid = PTRUE;
					break;
			}
			break;
		}
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056_NEG_GAIN:
			//top 2 bits in buffer[0] are packet type
			switch(buffer[0])
			{
				case SPATIAL_PACKET_DATA:
					if(phid->calDataValid)
					{
						int data;
						double accelUncalib[3] = {0,0,0};
						double gyroUncalib[3] = {0,0,0};
						int time;
						
						count = (buffer[1] & 0x1f) / 9;
						if(count == 0)
							goto done;

						//this timestamp is for the latest data
						time = ((unsigned short)buffer[2]<<8) + (unsigned short)buffer[3];
						if(phid->lastTimeCounterValid)
						{
							//0-255 ms
							int timechange = (unsigned short)((unsigned short)time - (unsigned short)phid->lastTimeCounter);
							timechange *= 1000; //us

							phid->timestamp.seconds = phid->timestamp.seconds + (phid->timestamp.microseconds + timechange) / 1000000;
							phid->timestamp.microseconds = (phid->timestamp.microseconds + timechange) % 1000000;
						}
						else
						{
							phid->lastTimeCounterValid = PTRUE;
						}
						phid->lastTimeCounter = time;

						//add data to data buffer
						for(i=0;i<count;i++)
						{
							//LIS344ALH - Vdd/15 V/g - 0xffff/15 = 0x1111 (4369.0)
							for(j=0;j<3;j++)
							{
								data = ((unsigned short)buffer[4 + j * 2 + i * 18]<<8) + (unsigned short)buffer[5 + j * 2 + i * 18];
								accelUncalib[j] = ((double)data - 0x7fff) / 4369.0;
							}
							accelUncalib[1] = -accelUncalib[1]; //reverse Y-axis
							//Apply offsets
							for(j=0;j<3;j++)
							{
								accelUncalib[j] -= phid->accelOffset[j];
							}
							//X
							if(accelUncalib[0] > 0)
								phid->dataBuffer[phid->bufferWritePtr].acceleration[0] = accelUncalib[0] * phid->accelGain1[0] + accelUncalib[1] * phid->accelFactor1[0] + accelUncalib[2] * phid->accelFactor2[0];
							else
								phid->dataBuffer[phid->bufferWritePtr].acceleration[0] = accelUncalib[0] * phid->accelGain2[0] + accelUncalib[1] * phid->accelFactor1[0] + accelUncalib[2] * phid->accelFactor2[0];
							//Y
							if(accelUncalib[1] > 0)
								phid->dataBuffer[phid->bufferWritePtr].acceleration[1] = accelUncalib[1] * phid->accelGain1[1] + accelUncalib[0] * phid->accelFactor1[1] + accelUncalib[2] * phid->accelFactor2[1];
							else
								phid->dataBuffer[phid->bufferWritePtr].acceleration[1] = accelUncalib[1] * phid->accelGain2[1] + accelUncalib[0] * phid->accelFactor1[1] + accelUncalib[2] * phid->accelFactor2[1];
							//Z
							if(accelUncalib[2] > 0)
								phid->dataBuffer[phid->bufferWritePtr].acceleration[2] = accelUncalib[2] * phid->accelGain1[2] + accelUncalib[0] * phid->accelFactor1[2] + accelUncalib[1] * phid->accelFactor2[2];
							else
								phid->dataBuffer[phid->bufferWritePtr].acceleration[2] = accelUncalib[2] * phid->accelGain2[2] + accelUncalib[0] * phid->accelFactor1[2] + accelUncalib[1] * phid->accelFactor2[2];

							//ADC ref is 0-3.3V - 50.355uV/bit, gyro zero rate is 1.23V, 2.5mV/deg/s - these voltages are fixed, non-ratiometric to Vref
							// 1 / 0.000050355 = 19859 (1V)
							// 1.23 * 19859 = 24427
							// 0.0025 * 19859 = 49.6477bits/deg/s
							for(j=0;j<3;j++)
							{
								data = ((unsigned short)buffer[10 + j * 2 + i * 18]<<8) + (unsigned short)buffer[11 + j * 2 + i * 18];
								if(j==1)
									gyroUncalib[j] = ((double)(data-24427) + phid->gyroOffset[j]) / 49.6477;
								else
									gyroUncalib[j] = ((double)-(data-24427) + phid->gyroOffset[j]) / 49.6477; //reverse X/Z-axis
							}
							//0 - we multiply these by their gains so revered axes will still appear positive and get the correct gain
							if((gyroUncalib[0] * phid->gyroGain1[0]) > 0)
								phid->dataBuffer[phid->bufferWritePtr].angularRate[0] = gyroUncalib[0] * phid->gyroGain1[0] - gyroUncalib[1] * phid->gyroFactor1[0] - gyroUncalib[2] * phid->gyroFactor2[0];
							else
								phid->dataBuffer[phid->bufferWritePtr].angularRate[0] = gyroUncalib[0] * phid->gyroGain2[0] - gyroUncalib[1] * phid->gyroFactor1[0] - gyroUncalib[2] * phid->gyroFactor2[0];
							//1
							if((gyroUncalib[1] * phid->gyroGain1[1]) > 0)
								phid->dataBuffer[phid->bufferWritePtr].angularRate[1] = gyroUncalib[1] * phid->gyroGain1[1] - gyroUncalib[0] * phid->gyroFactor1[1] - gyroUncalib[2] * phid->gyroFactor2[1];
							else
								phid->dataBuffer[phid->bufferWritePtr].angularRate[1] = gyroUncalib[1] * phid->gyroGain2[1] - gyroUncalib[0] * phid->gyroFactor1[1] - gyroUncalib[2] * phid->gyroFactor2[1];
							//2
							if((gyroUncalib[2] * phid->gyroGain1[2]) > 0)
								phid->dataBuffer[phid->bufferWritePtr].angularRate[2] = gyroUncalib[2] * phid->gyroGain1[2] - gyroUncalib[0] * phid->gyroFactor1[2] - gyroUncalib[1] * phid->gyroFactor2[2];
							else
								phid->dataBuffer[phid->bufferWritePtr].angularRate[2] = gyroUncalib[2] * phid->gyroGain2[2] - gyroUncalib[0] * phid->gyroFactor1[2] - gyroUncalib[1] * phid->gyroFactor2[2];

							//checks if compass data is valid
							//Note: we miss ~7 samples (28ms) every second while the compass is callibrating
							if(buffer[1] & (0x80 >> i))
							{
								//ADC 50.355uV/bit (0-3.3V)
								//ideal compass midpoint is 0x7FFF (32767) (1.65V) 
								//valid range for zero field offset is: 0.825V - 2.475V (16384-49151) (+-16384)
								// Note that this may be less (~3x) because the Gain is less, but I'm not sure. (+-5460)
								//valid output voltage range is defined as 0.165V - 3.135V (3277-62258), 
								// so we can't really trust values outside of this, though we do seem to get valid data...
								//ideal sensitivity is 250mV/gauss (ext. resistor), valid range is 195 - 305
								// 1 / 0.000050355 = 19859 (1Volt)
								// 0.250 * 19859 = 4964.75 bits/gauss (1.0 gain) (ideal) - valid range is (3861-6068) (+-1103)
								//We have defined the compass gain multiplier to be based on 6500bits/gauss to keep the math resonable,
								// so we must use that value here. Implications?
								//The largest range we can guarantee is:
								// 16384-3277/6068 = +-2.16 gauss or, more likely: +-3.96 gauss
								// Ideal is: 32767-3277/4964.75 = +-5.94 gauss
								// we can tell from the incoming data whether it's valid or not, 
								// we'll probably have more range in one dirrection then the other because of offset.
								for(j=0;j<phid->phid.attr.spatial.numCompassAxes; j++)
								{
									data = ((unsigned short)buffer[16 + i * 18 + j * 2]<<8) + (unsigned short)buffer[17 + i * 18 + j * 2];
									//if we are not within (3277-62258), data is not valid
									if(data < 3277)
									{
										phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = phid->magneticFieldMin;
										break;
									}
									if(data > 62258)
									{
										phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = phid->magneticFieldMax;
										break;
									}

									//if gain or offset don't make sense, throw out data
									//if(phid->compassGain[j] > 6068 || phid->compassGain[j] < 3861 || 
									if(phid->compassGain[j] > 6068 || phid->compassGain[j] < 2500 || //lower gains seem to be common
										phid->compassOffset[j] > 5460 || phid->compassOffset[j] < -5460)
									{
										if(data > 32767)
											phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = phid->magneticFieldMax;
										else
											phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = phid->magneticFieldMin;
										break;
									}

									//Convert ADC to Gauss
									phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = 
										-((double)data - 0x7fff - phid->compassOffset[j]) / phid->compassGain[j];

									//constrain to max/min
									//ie if field is 4.02 and max is 4.1, make it 4.1, since real max is 4.0
									if(phid->dataBuffer[phid->bufferWritePtr].magneticField[j] > (phid->magneticFieldMax - 0.1))
										phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = phid->magneticFieldMax;
									if(phid->dataBuffer[phid->bufferWritePtr].magneticField[j] < (phid->magneticFieldMin + 0.1))
										phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = phid->magneticFieldMin;
								}

							}
							else
							{
								phid->dataBuffer[phid->bufferWritePtr].magneticField[0] = PUNK_DBL;
								phid->dataBuffer[phid->bufferWritePtr].magneticField[1] = PUNK_DBL;
								phid->dataBuffer[phid->bufferWritePtr].magneticField[2] = PUNK_DBL;
							}

							updateLatestDataTime(phid, i);

							phid->dataBuffer[phid->bufferWritePtr].timestamp = phid->latestDataTime;

							phid->bufferWritePtr++;
							if(phid->bufferWritePtr >= SPATIAL_DATA_BUFFER_SIZE)
								phid->bufferWritePtr = 0;
						}
					}
					break;
				case SPATIAL_PACKET_CALIB:
					for (i = 0; i<phid->phid.attr.spatial.numAccelAxes; i++)
					{
						cal = ((unsigned short)buffer[i*7 + 1]<<4) + ((unsigned short)buffer[i*7 + 2]>>4);
						phid->accelGain1[i] = cal / (4096/0.4) + 0.8;
						cal = (((unsigned short)buffer[i*7 + 2]<<8) & 0x0F00) | ((unsigned short)buffer[i*7 + 3]);
						phid->accelGain2[i] = cal / (4096/0.4) + 0.8;
						cal = (unsigned short)((unsigned short)buffer[i*7 + 4]<<8) + (unsigned short)buffer[i*7 + 5];
						phid->accelOffset[i] = cal / (65535 / 1.0) - 0.5;
						cal = (unsigned char)buffer[i*7 + 6];
						phid->accelFactor1[i] = cal / (256 / 0.2) - 0.1;
						cal = (unsigned char)buffer[i*7 + 7];
						phid->accelFactor2[i] = cal / (256 / 0.2) - 0.1;
						//LOG(PHIDGET_LOG_INFO, "Accel(%d) Calib: %1.4lf, %1.4lf, %1.4lf, %1.4lf, %1.4lf", i, 
						//	phid->accelGain1[i], phid->accelGain2[i], phid->accelOffset[i], phid->accelFactor1[i], phid->accelFactor2[i]);
					}
					for (j=0; j<phid->phid.attr.spatial.numGyroAxes; i++,j++)
					{
						if (phidG->deviceUID == PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056)
						{
							cal = ((unsigned short)buffer[i*7 + 1]<<4) + ((unsigned short)buffer[i*7 + 2]>>4);
							phid->gyroGain1[j] = cal / (4096/0.4) + 0.8;
							cal = (((unsigned short)buffer[i*7 + 2]<<8) & 0x0F00) | ((unsigned short)buffer[i*7 + 3]);
							phid->gyroGain2[j] = cal / (4096/0.4) + 0.8;
						}
						//Allow for negative gains
						else if (phidG->deviceUID == PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056_NEG_GAIN)
						{
							cal = ((signed short)((signed char)buffer[i*7 + 1])<<4) + ((unsigned short)buffer[i*7 + 2]>>4);
							phid->gyroGain1[j] = cal / (4096/0.4) + (cal > 0 ? 0.9 : -0.9);
							cal = ((((unsigned short)buffer[i*7 + 2]<<8) & 0x0F00) | ((unsigned short)buffer[i*7 + 3]) ) << 4;
							cal = (signed short)cal >> 4;
							phid->gyroGain2[j] = cal / (4096/0.4) + (cal > 0 ? 0.9 : -0.9);
						}
						cal = (signed short)((unsigned short)buffer[i*7 + 4]<<8) + (unsigned short)buffer[i*7 + 5];
						phid->gyroOffset[j] = cal;
						cal = (unsigned char)buffer[i*7 + 6];
						phid->gyroFactor1[j] = cal / (256 / 0.1) - 0.05;
						cal = (unsigned char)buffer[i*7 + 7];
						phid->gyroFactor2[j] = cal / (256 / 0.1) - 0.05;

//Zero out calibrations
#if 0
						phid->gyroGain1[j] = 1;
						phid->gyroGain2[j] = 1;
						phid->gyroOffset[j] = 0;
						phid->gyroFactor1[j] = 0;
						phid->gyroFactor2[j] = 0;
#endif

						LOG(PHIDGET_LOG_VERBOSE, "Gyro(%d) Calib: %1.4lf, %1.4lf, %1.4lf, %1.4lf, %1.4lf", j, 
							phid->gyroGain1[j], phid->gyroGain2[j], phid->gyroOffset[j], phid->gyroFactor1[j], phid->gyroFactor2[j]);
					}
					for(j=0;j<phid->phid.attr.spatial.numCompassAxes; j++)
					{
						phid->compassOffset[j] = (signed short)((unsigned short)buffer[j*4 + 49]<<8) + (unsigned short)buffer[j*4 + 50];
						phid->compassGain[j] = ((unsigned short)buffer[j*4 + 51]<<8) + (unsigned short)buffer[j*4 + 52];
						//phid->compassGain[j] = 4964;
					}
					//LOG(PHIDGET_LOG_INFO, "Compass Gain: %d, %d, %d", phid->compassGain[0], phid->compassGain[1], phid->compassGain[2]);
					//LOG(PHIDGET_LOG_INFO, "Compass Offset: %d, %d, %d", phid->compassOffset[0], phid->compassOffset[1], phid->compassOffset[2]);
					phid->calDataValid = PTRUE;
					break;
			}
			break;
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1041:
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1043:
		{
			int time;
			int analogOrDigital = ((unsigned short)buffer[1]<<8) + (unsigned short)buffer[2];
			count = buffer[0];

			if(count == 0)
				goto done;

			//this timestamp is for the latest data
			time = ((unsigned short)buffer[3]<<8) + (unsigned short)buffer[4];
			updateTimestamp(phid, time);

			//add data to data buffer
			for(i=0;i<count;i++)
			{
				int countOffset = i * 6; //Each set of samples is 6 bytes
				for(j=0;j<3;j++)
				{
					int indexOffset = j * 2; //Each value is 2 bytes
					short accelData	= (signed short)((unsigned short)buffer[5 + indexOffset + countOffset]<<8) + (unsigned short)buffer[6 + indexOffset + countOffset];

					//digital accel
					if(analogOrDigital & (0x01 << i))
						phid->dataBuffer[phid->bufferWritePtr].acceleration[j] = (double)accelData / SPATIAL_MMA8451Q_BITS_PER_G;
					//analog accel
					else
						phid->dataBuffer[phid->bufferWritePtr].acceleration[j] = (double)accelData / SPATIAL_KXR94_2050_w_AD7689_BITS_PER_G;
				}

				updateLatestDataTime(phid, i);

				phid->dataBuffer[phid->bufferWritePtr].timestamp = phid->latestDataTime;

				phid->bufferWritePtr++;
				if(phid->bufferWritePtr >= SPATIAL_DATA_BUFFER_SIZE)
					phid->bufferWritePtr = 0;
			}
			break;
		}
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
		{
			int time;
			int flags = buffer[1];
			count = buffer[0];

			if(count == 0)
				goto done;

			//this timestamp is for the latest data
			time = ((unsigned short)buffer[2]<<8) + (unsigned short)buffer[3];
			updateTimestamp(phid, time);

			//add data to data buffer
			for(i=0;i<count;i++)
			{
				int countOffset = i * 18; //Each set of samples is 18 bytes
				for(j=0;j<3;j++)
				{
					int indexOffset = j * 2; //Each value is 2 bytes
					short accelData	= (signed short)((unsigned short)buffer[ 4 + indexOffset + countOffset] << 8) + (unsigned short)buffer[ 5 + indexOffset + countOffset];
					short gyroData  = (signed short)((unsigned short)buffer[10 + indexOffset + countOffset] << 8) + (unsigned short)buffer[11 + indexOffset + countOffset];
					short magData   = (signed short)((unsigned short)buffer[16 + indexOffset + countOffset] << 8) + (unsigned short)buffer[17 + indexOffset + countOffset];

					//digital accel
					if(flags & (0x02 >> i))
						phid->dataBuffer[phid->bufferWritePtr].acceleration[j] = (double)accelData / SPATIAL_MMA8451Q_BITS_PER_G;
					//analog accel
					else
						phid->dataBuffer[phid->bufferWritePtr].acceleration[j] = (double)accelData / SPATIAL_KXR94_2050_w_AD7689_BITS_PER_G;
					
					//digital gyro
					if(flags & (0x08 >> i))
							phid->dataBuffer[phid->bufferWritePtr].angularRate[j] = (double)gyroData / SPATIAL_L3GD20_BITS_PER_DPS;
					//analog gyro
					else
						if(j==2)
							phid->dataBuffer[phid->bufferWritePtr].angularRate[j] = (double)(gyroData) / SPATIAL_LY330ALH_w_AD7689_BITS_PER_DPS;
						else
							phid->dataBuffer[phid->bufferWritePtr].angularRate[j] = (double)(gyroData) / SPATIAL_LRP410AL_w_AD7689_BITS_PER_DPS;
									
					//compass valid
					if(flags & (0x20 >> i))
						phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = magData / SPATIAL_HMC5883L_BITS_PER_GAUSS;
					//no compass data
					else
						phid->dataBuffer[phid->bufferWritePtr].magneticField[j] = PUNK_DBL;
				}

				updateLatestDataTime(phid, i);

				phid->dataBuffer[phid->bufferWritePtr].timestamp = phid->latestDataTime;

				phid->bufferWritePtr++;
				if(phid->bufferWritePtr >= SPATIAL_DATA_BUFFER_SIZE)
					phid->bufferWritePtr = 0;
			}
			break;
		}
		default:
			return EPHIDGET_UNEXPECTED;
	}

	if(phid->doZeroGyro)
	{
		//done
		if(timestampdiff(phid->latestDataTime, phid->dataBuffer[phid->gyroZeroReadPtr].timestamp) >= SPATIAL_ZERO_GYRO_TIME)
		{
			double gryoCorrectionTemp[SPATIAL_MAX_GYROAXES] = {0,0,0};
			int gryoCorrectionCount = 0;

			while(phid->gyroZeroReadPtr != phid->bufferWritePtr)
			{
				for (i = 0; i<phid->phid.attr.spatial.numGyroAxes; i++)
				{
					gryoCorrectionTemp[i] += phid->dataBuffer[phid->gyroZeroReadPtr].angularRate[i];
				}

				phid->gyroZeroReadPtr++;
				if(phid->gyroZeroReadPtr >= SPATIAL_DATA_BUFFER_SIZE)
					phid->gyroZeroReadPtr = 0;

				gryoCorrectionCount++;
			}
			
			for (i = 0; i<phid->phid.attr.spatial.numGyroAxes; i++)
			{
				phid->gryoCorrection[i] = gryoCorrectionTemp[i] / (double)gryoCorrectionCount;
			}

			doneGyroZero = PTRUE;
		}
	}

	//see if it's time for an event
	if(timestampdiff(phid->latestDataTime, phid->lastEventTime) >= dataRate)
	{
		CPhidget_Timestamp tempTime;
		//int lastPtr;
		int accelCounter[SPATIAL_MAX_ACCELAXES], angularRateCounter[SPATIAL_MAX_ACCELAXES], magneticFieldCounter[SPATIAL_MAX_ACCELAXES];

		int dataPerEvent = 0;

		int multipleDataPerEvent = PFALSE;

		if(dataRate < phid->interruptRate)
			multipleDataPerEvent = PTRUE;

		//max of 16 data per event
		eventData = malloc(16 * sizeof(CPhidgetSpatial_SpatialEventDataHandle));
		
		for(j=0;;j++)
		{
			//makes sure we read all data
			if(phid->bufferReadPtr == phid->bufferWritePtr || j>=16)
			{
				dataPerEvent = j;
				break;
			}

			eventData[j] = malloc(sizeof(CPhidgetSpatial_SpatialEventData));
			ZEROMEM(accelCounter, sizeof(accelCounter));
			ZEROMEM(angularRateCounter, sizeof(angularRateCounter));
			ZEROMEM(magneticFieldCounter, sizeof(magneticFieldCounter));

			tempTime = phid->dataBuffer[phid->bufferReadPtr].timestamp;

			//average data for each stage
			while(phid->bufferReadPtr != phid->bufferWritePtr && 
				(!multipleDataPerEvent || timestampdiff(phid->dataBuffer[phid->bufferReadPtr].timestamp, tempTime) < dataRate))
			{
				for (i = 0; i<phid->phid.attr.spatial.numAccelAxes; i++)
				{
					if(phid->dataBuffer[phid->bufferReadPtr].acceleration[i] != PUNK_DBL)
					{
						if(phid->dataBuffer[phid->bufferReadPtr].acceleration[i] > phid->accelerationMax)
							phid->dataBuffer[phid->bufferReadPtr].acceleration[i] = phid->accelerationMax;
						if(phid->dataBuffer[phid->bufferReadPtr].acceleration[i] < phid->accelerationMin) 
							phid->dataBuffer[phid->bufferReadPtr].acceleration[i] = phid->accelerationMin;
						accelAvg[i] += phid->dataBuffer[phid->bufferReadPtr].acceleration[i];
						accelCounter[i]++;
					}
				}
				for (i = 0; i<phid->phid.attr.spatial.numGyroAxes; i++)
				{
					if(phid->dataBuffer[phid->bufferReadPtr].angularRate[i] != PUNK_DBL)
					{
						double rate = phid->dataBuffer[phid->bufferReadPtr].angularRate[i] - phid->gryoCorrection[i];

						if(rate > phid->angularRateMax) 
							angularRateAvg[i] += phid->angularRateMax;
						else if(rate < phid->angularRateMin) 
							angularRateAvg[i] += phid->angularRateMin;
						else
							angularRateAvg[i] += rate;
						angularRateCounter[i]++;
					}
				}
				for (i = 0; i<phid->phid.attr.spatial.numCompassAxes; i++)
				{
					if(phid->dataBuffer[phid->bufferReadPtr].magneticField[i] != PUNK_DBL)
					{
						if(phid->dataBuffer[phid->bufferReadPtr].magneticField[i] > phid->magneticFieldMax) 
							phid->dataBuffer[phid->bufferReadPtr].magneticField[i] = phid->magneticFieldMax;
						if(phid->dataBuffer[phid->bufferReadPtr].magneticField[i] < phid->magneticFieldMin) 
							phid->dataBuffer[phid->bufferReadPtr].magneticField[i] = phid->magneticFieldMin;
						magneticFieldAvg[i] += phid->dataBuffer[phid->bufferReadPtr].magneticField[i];
						magneticFieldCounter[i]++;
					}
				}

				//lastPtr = phid->bufferReadPtr;

				phid->bufferReadPtr++;
				if(phid->bufferReadPtr >= SPATIAL_DATA_BUFFER_SIZE)
					phid->bufferReadPtr = 0;
			}

			for (i = 0; i<phid->phid.attr.spatial.numAccelAxes; i++)
			{
				if(accelCounter[i] > 0)
					eventData[j]->acceleration[i] = round_double(accelAvg[i] / (double)accelCounter[i], 5);
				else
					eventData[j]->acceleration[i] = PUNK_DBL;
				accelAvg[i] = 0;
			}
			for (i = 0; i<phid->phid.attr.spatial.numGyroAxes; i++)
			{
				if(angularRateCounter[i] > 0)
				{
					if(phid->doZeroGyro && !doneGyroZero)
						eventData[j]->angularRate[i] = 0;
					else
						eventData[j]->angularRate[i] = round_double(angularRateAvg[i] / (double)angularRateCounter[i], 5);
				}
				else
					eventData[j]->angularRate[i] = PUNK_DBL;
				angularRateAvg[i] = 0;
			}
			for (i = 0; i<phid->phid.attr.spatial.numCompassAxes; i++)
			{
				if(magneticFieldCounter[i] > 0)
					eventData[j]->magneticField[i] = round_double(magneticFieldAvg[i] / (double)magneticFieldCounter[i], 5);
				else
					eventData[j]->magneticField[i] = PUNK_DBL;
				magneticFieldAvg[i] = 0;
			}
			eventData[j]->timestamp = tempTime;
		}

		//correct magnetic field data in the event structure
		// But only on devices that don't do this in Firmware!
		switch(phid->phid.deviceUID)
		{
			case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056:
			case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056_NEG_GAIN:
				for( j = 0; j < dataPerEvent; j++)
				{
					for (i = 0; i<phid->phid.attr.spatial.numCompassAxes; i++)
					{
						magneticFieldCorr[i] = eventData[j]->magneticField[i];
					}
					for (i = 0; i<phid->phid.attr.spatial.numCompassAxes; i++)
					{
						if(eventData[j]->magneticField[i] != PUNK_DBL)
						{
							eventData[j]->magneticField[i] = getCorrectedField(phid, magneticFieldCorr, i);
						}
					}
				}
				break;
			case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
			case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
			default:
				break;
		}

		//store to local structure
		ZEROMEM(accelCounter, sizeof(accelCounter));
		ZEROMEM(angularRateCounter, sizeof(angularRateCounter));
		ZEROMEM(magneticFieldCounter, sizeof(magneticFieldCounter));
		for( j = 0; j < dataPerEvent; j++)
		{
			for (i = 0; i<phid->phid.attr.spatial.numAccelAxes; i++)
			{
				if(eventData[j]->acceleration[i] != PUNK_DBL)
				{
					accelAvg[i] += eventData[j]->acceleration[i];
					accelCounter[i]++;
				}
			}
			for (i = 0; i<phid->phid.attr.spatial.numGyroAxes; i++)
			{
				if(eventData[j]->angularRate[i] != PUNK_DBL)
				{
					angularRateAvg[i] += eventData[j]->angularRate[i];
					angularRateCounter[i]++;
				}
			}
			for (i = 0; i<phid->phid.attr.spatial.numCompassAxes; i++)
			{
				if(eventData[j]->magneticField[i] != PUNK_DBL)
				{
					magneticFieldAvg[i] += eventData[j]->magneticField[i];
					magneticFieldCounter[i]++;
				}
			}
		}

		//Set local get data to averages
		for (i = 0; i<phid->phid.attr.spatial.numAccelAxes; i++)
		{
			if(accelCounter[i] > 0)
				phid->accelAxis[i] = round_double(accelAvg[i] / (double)accelCounter[i], 5);
			else
				phid->accelAxis[i] = PUNK_DBL;
		}
		for (i = 0; i<phid->phid.attr.spatial.numGyroAxes; i++)
		{
			if(angularRateCounter[i] > 0)
			{
				if(phid->doZeroGyro && !doneGyroZero)
					phid->gyroAxis[i] = 0;
				else
					phid->gyroAxis[i] = round_double(angularRateAvg[i] / (double)angularRateCounter[i], 5);
			}
			else
				phid->gyroAxis[i] = PUNK_DBL;
		}
		for (i = 0; i<phid->phid.attr.spatial.numCompassAxes; i++)
		{
			if(magneticFieldCounter[i] > 0)
				phid->compassAxis[i] = round_double(magneticFieldAvg[i] / (double)magneticFieldCounter[i], 5);
			else
				phid->compassAxis[i] = PUNK_DBL;
		}
		
		//send out any events
		FIRE(SpatialData, eventData, dataPerEvent);

		phid->lastEventTime = phid->latestDataTime;

		for(i=0;i<dataPerEvent;i++)
			free(eventData[i]);
		free(eventData);
	}
done:

	//this will signal the zero function to return;
	if(doneGyroZero)
		phid->doZeroGyro = PFALSE;

	return EPHIDGET_OK;
}

//eventsAfterOpen - sends out an event for all valid data, used during attach initialization
CPHIDGETINITEVENTS(Spatial)
	TESTPTR(phid);
	//don't need to worry, because the interrupts come at a set rate
	return EPHIDGET_OK;
}

//getPacket - not used for spatial
CGETPACKET(Spatial)
	return EPHIDGET_UNEXPECTED;
}

static double getCorrectedField(CPhidgetSpatialHandle phid, double fields[], int axis)
{
	switch(axis)
	{
	case 0:
		return phid->userMagField * 
			(phid->userCompassGain[0] * (fields[0] - phid->userCompassOffset[0])
			+ phid->userCompassTransform[0] * (fields[1] - phid->userCompassOffset[1])
			+ phid->userCompassTransform[1] * (fields[2] - phid->userCompassOffset[2]));
	case 1:
		return phid->userMagField * 
			(phid->userCompassGain[1] * (fields[1] - phid->userCompassOffset[1])
			+ phid->userCompassTransform[2] * (fields[0] - phid->userCompassOffset[0])
			+ phid->userCompassTransform[3] * (fields[2] - phid->userCompassOffset[2]));
	case 2:
		return phid->userMagField * 
			(phid->userCompassGain[2] * (fields[2] - phid->userCompassOffset[2])
			+ phid->userCompassTransform[4] * (fields[0] - phid->userCompassOffset[0])
			+ phid->userCompassTransform[5] * (fields[1] - phid->userCompassOffset[1]));
	default:
		return 0;
	}
}

// Accel and Gyro tables are the same structure - just different table IDs.
static int setCalibrationValues_inFirmware(CPhidgetSpatialHandle phid, int tableID, int index,
	double gainPositive[3], double gainNegative[3], double offset[3], double factor1[3], double factor2[3])
{
	unsigned char buffer[SPATIAL_ACCEL_GYRO_CALIB_TABLE_LENGTH] = {0};
	int i;
	double offsetMultipliers[3];
	unsigned int header;

	TESTPTR(phid)
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	if(!deviceSupportsGeneralUSBProtocol((CPhidgetHandle)phid))
		return EPHIDGET_UNSUPPORTED;

	switch(phid->phid.deviceUID)
	{
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1043:
			if(index == SPATIAL_ANALOG_ACCEL_CALIB_TABLE_INDEX)
			{
				offsetMultipliers[0] = offsetMultipliers[1] = offsetMultipliers[2] = SPATIAL_KXR94_2050_w_AD7689_BITS_PER_G;
				break;
			}
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1041:
			if(index == SPATIAL_DIGITAL_ACCEL_CALIB_TABLE_INDEX)
			{
				offsetMultipliers[0] = offsetMultipliers[1] = offsetMultipliers[2] = SPATIAL_MMA8451Q_BITS_PER_G;
				break;
			}
			else
				return EPHIDGET_UNSUPPORTED;

		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
			if(index == SPATIAL_ANALOG_GYRO_CALIB_TABLE_INDEX)
			{
				offsetMultipliers[0] = offsetMultipliers[1] = SPATIAL_LRP410AL_w_AD7689_BITS_PER_DPS;
				offsetMultipliers[2] = SPATIAL_LY330ALH_w_AD7689_BITS_PER_DPS;
				break;
			}
			if(index == SPATIAL_ANALOG_ACCEL_CALIB_TABLE_INDEX)
			{
				offsetMultipliers[0] = offsetMultipliers[1] = offsetMultipliers[2] = SPATIAL_KXR94_2050_w_AD7689_BITS_PER_G;
				break;
			}
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
			if(index == SPATIAL_DIGITAL_GYRO_CALIB_TABLE_INDEX)
			{
				offsetMultipliers[0] = offsetMultipliers[1] = offsetMultipliers[2] = SPATIAL_L3GD20_BITS_PER_DPS;
				break;
			}
			if(index == SPATIAL_DIGITAL_ACCEL_CALIB_TABLE_INDEX)
			{
				offsetMultipliers[0] = offsetMultipliers[1] = offsetMultipliers[2] = SPATIAL_MMA8451Q_BITS_PER_G;
				break;
			}
			else
				return EPHIDGET_UNSUPPORTED;
		default:
			return EPHIDGET_UNSUPPORTED;
	}

	header = (((unsigned int)tableID) << 20) | SPATIAL_ACCEL_GYRO_CALIB_TABLE_LENGTH;

    buffer[3] = header >> 24; //header high byte
    buffer[2] = header >> 16;
    buffer[1] = header >> 8;
    buffer[0] = header >> 0; //header low byte

	for(i=0;i<3;i++)
	{
		int int32Offset = i * 4;
		int temp;

		temp = round(gainPositive[i] * (double)0x10000);
		buffer[int32Offset +  7] = temp >> 24;
		buffer[int32Offset +  6] = temp >> 16;
		buffer[int32Offset +  5] = temp >> 8;
		buffer[int32Offset +  4] = temp >> 0;
		
		temp = round(gainNegative[i] * (double)0x10000);
		buffer[int32Offset + 19] = temp >> 24;
		buffer[int32Offset + 18] = temp >> 16;
		buffer[int32Offset + 17] = temp >> 8;
		buffer[int32Offset + 16] = temp >> 0;

		temp = round(offset[i] * offsetMultipliers[i]);
		buffer[int32Offset + 31] = temp >> 24;
		buffer[int32Offset + 30] = temp >> 16;
		buffer[int32Offset + 29] = temp >> 8;
		buffer[int32Offset + 28] = temp >> 0;

		temp = round(factor1[i] * (double)0x10000);
		buffer[int32Offset + 43] = temp >> 24;
		buffer[int32Offset + 42] = temp >> 16;
		buffer[int32Offset + 41] = temp >> 8;
		buffer[int32Offset + 40] = temp >> 0;

		temp = round(factor2[i] * (double)0x10000);
		buffer[int32Offset + 55] = temp >> 24;
		buffer[int32Offset + 54] = temp >> 16;
		buffer[int32Offset + 53] = temp >> 8;
		buffer[int32Offset + 52] = temp >> 0;
	}

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
	{
		//TODO - maybe, maybe not.
		return EPHIDGET_UNSUPPORTED;
	}
	else
		return CPhidgetGPP_setDeviceSpecificConfigTable((CPhidgetHandle)phid, buffer, SPATIAL_ACCEL_GYRO_CALIB_TABLE_LENGTH, index);
}

static int setCompassCorrectionTable_inFimrware(
	CPhidgetSpatialHandle phid, 
	double magField, 
	double offset0, double offset1, double offset2, 
	double gain0, double gain1, double gain2, 
	double T0, double T1, double T2, double T3, double T4, double T5)
{
	unsigned char buffer[SPATIAL_COMPASS_CALIB_TABLE_LENGTH] = {0};
	int i;
	int gains[3], offsets[3], transforms[6], mag;
	TESTPTR(phid)
	if (!CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_ATTACHED_FLAG))
		return EPHIDGET_NOTATTACHED;

	if(!deviceSupportsGeneralUSBProtocol((CPhidgetHandle)phid))
		return EPHIDGET_UNSUPPORTED;

	//compass calibration table Header is: 0x3EA00038
    buffer[3] = 0x3E; //header high byte
    buffer[2] = 0xA0;
    buffer[1] = 0x00;
    buffer[0] = SPATIAL_COMPASS_CALIB_TABLE_LENGTH; //header low byte

	//Mag Field (x0x10000)
	mag = round(magField * (double)0x10000);
    buffer[7] = mag >> 24;
    buffer[6] = mag >> 16;
    buffer[5] = mag >> 8;
    buffer[4] = mag >> 0;

	//Gain (x0x10000)
	gains[0] = round(gain0 * (double)0x10000);
	gains[1] = round(gain1 * (double)0x10000);
	gains[2] = round(gain2 * (double)0x10000);
	for(i=0;i<3;i++)
	{
		buffer[i*4+11] = gains[i] >> 24;
		buffer[i*4+10] = gains[i] >> 16;
		buffer[i*4+9] = gains[i] >> 8;
		buffer[i*4+8] = gains[i] >> 0;
	}

	//Offset
	offsets[0] = round(offset0 * (double)SPATIAL_HMC5883L_BITS_PER_GAUSS);
	offsets[1] = round(offset1 * (double)SPATIAL_HMC5883L_BITS_PER_GAUSS);
	offsets[2] = round(offset2 * (double)SPATIAL_HMC5883L_BITS_PER_GAUSS);
	for(i=0;i<3;i++)
	{
		buffer[i*4+23] = offsets[i] >> 24;
		buffer[i*4+22] = offsets[i] >> 16;
		buffer[i*4+21] = offsets[i] >> 8;
		buffer[i*4+20] = offsets[i] >> 0;
	}

	//Transforms (x0x10000)
	transforms[0] = round(T0 * (double)0x10000);
	transforms[1] = round(T1 * (double)0x10000);
	transforms[2] = round(T2 * (double)0x10000);
	transforms[3] = round(T3 * (double)0x10000);
	transforms[4] = round(T4 * (double)0x10000);
	transforms[5] = round(T5 * (double)0x10000);
	for(i=0;i<6;i++)
	{
		buffer[i*4+35] = transforms[i] >> 24;
		buffer[i*4+34] = transforms[i] >> 16;
		buffer[i*4+33] = transforms[i] >> 8;
		buffer[i*4+32] = transforms[i] >> 0;
	}

	//Label Table index is: 0
	return CPhidgetGPP_setDeviceSpecificConfigTable((CPhidgetHandle)phid, buffer, SPATIAL_COMPASS_CALIB_TABLE_LENGTH, SPATIAL_COMPASS_CALIB_TABLE_INDEX);
}

// === Exported Functions === //

//create and initialize a device structure
CCREATE(Spatial, PHIDCLASS_SPATIAL)

//event setup functions
CFHANDLE(Spatial, SpatialData, CPhidgetSpatial_SpatialEventDataHandle *, int)

CGET(Spatial,AccelerationAxisCount,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	MASGN(phid.attr.spatial.numAccelAxes)
}
CGET(Spatial,GyroAxisCount,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	MASGN(phid.attr.spatial.numGyroAxes)
}
CGET(Spatial,CompassAxisCount,int)
	TESTPTRS(phid,pVal) 
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	MASGN(phid.attr.spatial.numCompassAxes)
}

CGETINDEX(Spatial,Acceleration,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTINDEX(phid.attr.spatial.numAccelAxes)
	TESTMASGN(accelAxis[Index], PUNK_DBL)

	MASGN(accelAxis[Index])
}

CGETINDEX(Spatial,AccelerationMax,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTINDEX(phid.attr.spatial.numAccelAxes)
	TESTMASGN(accelerationMax, PUNK_DBL)

	MASGN(accelerationMax)
}

CGETINDEX(Spatial,AccelerationMin,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTINDEX(phid.attr.spatial.numAccelAxes)
	TESTMASGN(accelerationMin, PUNK_DBL)

	MASGN(accelerationMin)
}

CGETINDEX(Spatial,AngularRate,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_SPATIAL_ACCEL_GYRO_COMPASS:
			TESTINDEX(phid.attr.spatial.numGyroAxes)
			TESTMASGN(gyroAxis[Index], PUNK_DBL)
			MASGN(gyroAxis[Index])
		case PHIDID_SPATIAL_ACCEL_3AXIS:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CGETINDEX(Spatial,AngularRateMax,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_SPATIAL_ACCEL_GYRO_COMPASS:
			TESTINDEX(phid.attr.spatial.numGyroAxes)
			TESTMASGN(angularRateMax, PUNK_DBL)
			MASGN(angularRateMax)
		case PHIDID_SPATIAL_ACCEL_3AXIS:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CGETINDEX(Spatial,AngularRateMin,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_SPATIAL_ACCEL_GYRO_COMPASS:
			TESTINDEX(phid.attr.spatial.numGyroAxes)
			TESTMASGN(angularRateMin, PUNK_DBL)
			MASGN(angularRateMin)
		case PHIDID_SPATIAL_ACCEL_3AXIS:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CGETINDEX(Spatial,MagneticField,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_SPATIAL_ACCEL_GYRO_COMPASS:
			TESTINDEX(phid.attr.spatial.numCompassAxes)
			TESTMASGN(compassAxis[Index], PUNK_DBL)
			MASGN(compassAxis[Index])
		case PHIDID_SPATIAL_ACCEL_3AXIS:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CGETINDEX(Spatial,MagneticFieldMax,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_SPATIAL_ACCEL_GYRO_COMPASS:
			TESTINDEX(phid.attr.spatial.numCompassAxes)
			TESTMASGN(magneticFieldMax, PUNK_DBL)
			MASGN(magneticFieldMax)
		case PHIDID_SPATIAL_ACCEL_3AXIS:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CGETINDEX(Spatial,MagneticFieldMin,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_SPATIAL_ACCEL_GYRO_COMPASS:
			TESTINDEX(phid.attr.spatial.numCompassAxes)
			TESTMASGN(magneticFieldMin, PUNK_DBL)
			MASGN(magneticFieldMin)
		case PHIDID_SPATIAL_ACCEL_3AXIS:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

CSET(Spatial,DataRate,int)
	TESTPTR(phid)
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTRANGE(phid->dataRateMax, phid->dataRateMin)

	//make sure it's a power of 2, or 1
	if(newVal < phid->interruptRate)
	{
		int temp = phid->dataRateMax;
		unsigned char good = FALSE;
		while(temp <= newVal)
		{
			if(temp == newVal)
			{
				good = TRUE;
				break;
			}
			temp *= 2;
		}
		if(!good)
			return EPHIDGET_INVALIDARG;
	}
	//make sure it's divisible by interruptRate
	else
	{
		if(newVal%phid->interruptRate)
			return EPHIDGET_INVALIDARG;
	}

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
		ADDNETWORKKEY(DataRate, "%d", dataRate);
	else
		phid->dataRate = newVal;

	return EPHIDGET_OK;
}
CGET(Spatial,DataRate,int)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTMASGN(dataRate, PUNK_INT)

	MASGN(dataRate)
}

CGET(Spatial,DataRateMax,int)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTMASGN(dataRateMax, PUNK_INT)

	MASGN(dataRateMax)
}

CGET(Spatial,DataRateMin,int)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTMASGN(dataRateMin, PUNK_INT)

	MASGN(dataRateMin)
}

PHIDGET21_API int CCONV CPhidgetSpatial_zeroGyro(CPhidgetSpatialHandle phid)
{
	int result = EPHIDGET_OK;
	TESTPTR(phid) 
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	if(phid->phid.attr.spatial.numGyroAxes==0)
		return EPHIDGET_UNSUPPORTED;

	if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
	{
		int newVal = phid->flip^1;
		ADDNETWORKKEY(ZeroGyro, "%d", flip);
	}
	else
	{
		switch(phid->phid.deviceUID)
		{
			case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
			case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
			{
				unsigned char buffer[8] = { 0 };
				buffer[0] = SPATIAL_ZERO_GYRO;
				result = CUSBSendPacket((CPhidgetHandle)phid, buffer);
				break;
			}
			case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056:
			case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056_NEG_GAIN:
				if(!phid->doZeroGyro)
				{
					phid->gyroZeroReadPtr = phid->bufferReadPtr;
					phid->doZeroGyro = PTRUE;
				}
				break;
			default:
				return EPHIDGET_UNEXPECTED;
		}
	}

	return EPHIDGET_OK;
}

PHIDGET21_API int CCONV CPhidgetSpatial_resetCompassCorrectionParameters(
	CPhidgetSpatialHandle phid)
{
	TESTPTR(phid) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_SPATIAL_ACCEL_GYRO_COMPASS:
			if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
			{
				char newVal[1024];
				sprintf(newVal, "1,0,0,0,1,1,1,0,0,0,0,0,0");
				ADDNETWORKKEY(CompassCorrectionParams, "%s", compassCorrectionParamsString);
			}
			else
			{
				switch(phid->phid.deviceUID)
				{
					case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056:
					case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056_NEG_GAIN:

						phid->userMagField = 1;

						phid->userCompassOffset[0] = 0;
						phid->userCompassOffset[1] = 0;
						phid->userCompassOffset[2] = 0;

						phid->userCompassGain[0] = 1;
						phid->userCompassGain[1] = 1;
						phid->userCompassGain[2] = 1;

						phid->userCompassTransform[0] = 0;
						phid->userCompassTransform[1] = 0;
						phid->userCompassTransform[2] = 0;
						phid->userCompassTransform[3] = 0;
						phid->userCompassTransform[4] = 0;
						phid->userCompassTransform[5] = 0;
						break;
					case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
					case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
						return setCompassCorrectionTable_inFimrware(phid,
							1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0);
					default:
						return EPHIDGET_UNEXPECTED;
				}
			}
			return EPHIDGET_OK;
		case PHIDID_SPATIAL_ACCEL_3AXIS:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}
PHIDGET21_API int CCONV CPhidgetSpatial_setCompassCorrectionParameters(
	CPhidgetSpatialHandle phid, 
	double magField, 
	double offset0, double offset1, double offset2, 
	double gain0, double gain1, double gain2, 
	double T0, double T1, double T2, double T3, double T4, double T5)
{
	TESTPTR(phid) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceIDSpec)
	{
		case PHIDID_SPATIAL_ACCEL_GYRO_COMPASS:
			//Magnetic Field 0.1-1000
			if(magField < 0.1 || magField > 1000)
				return EPHIDGET_INVALIDARG;
			//Offsets need to be 0+-5.0
			if(offset0 < -5 || offset0 > 5)
				return EPHIDGET_INVALIDARG;
			if(offset1 < -5 || offset1 > 5)
				return EPHIDGET_INVALIDARG;
			if(offset2 < -5 || offset2 > 5)
				return EPHIDGET_INVALIDARG;
			//Gains need to be 0-15.0
			if(gain0 < 0 || gain0 > 15)
				return EPHIDGET_INVALIDARG;
			if(gain1 < 0 || gain1 > 15)
				return EPHIDGET_INVALIDARG;
			if(gain2 < 0 || gain2 > 15)
				return EPHIDGET_INVALIDARG;
			//T params 0+-5.0
			if(T0 < -5 || T0 > 5)
				return EPHIDGET_INVALIDARG;
			if(T1 < -5 || T1 > 5)
				return EPHIDGET_INVALIDARG;
			if(T2 < -5 || T2 > 5)
				return EPHIDGET_INVALIDARG;
			if(T3 < -5 || T3 > 5)
				return EPHIDGET_INVALIDARG;
			if(T4 < -5 || T4 > 5)
				return EPHIDGET_INVALIDARG;
			if(T5 < -5 || T5 > 5)
				return EPHIDGET_INVALIDARG;

			if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
			{
				char newVal[1024];
				sprintf(newVal, "%lE,%lE,%lE,%lE,%lE,%lE,%lE,%lE,%lE,%lE,%lE,%lE,%lE",
					magField, offset0, offset1, offset2, gain0, gain1, gain2, T0, T1, T2, T3, T4, T5);
				ADDNETWORKKEY(CompassCorrectionParams, "%s", compassCorrectionParamsString);
			}
			else
			{
				switch(phid->phid.deviceUID)
				{
					case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056:
					case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1056_NEG_GAIN:

						phid->userMagField = magField;

						phid->userCompassOffset[0] = offset0;
						phid->userCompassOffset[1] = offset1;
						phid->userCompassOffset[2] = offset2;

						phid->userCompassGain[0] = gain0;
						phid->userCompassGain[1] = gain1;
						phid->userCompassGain[2] = gain2;

						phid->userCompassTransform[0] = T0;
						phid->userCompassTransform[1] = T1;
						phid->userCompassTransform[2] = T2;
						phid->userCompassTransform[3] = T3;
						phid->userCompassTransform[4] = T4;
						phid->userCompassTransform[5] = T5;
						break;

					case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
					case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
						return setCompassCorrectionTable_inFimrware(phid,
							magField, offset0, offset1, offset2,
							gain0, gain1, gain2, T0, T1, T2, T3, T4, T5);
					default:
						return EPHIDGET_UNEXPECTED;
				}
			}
			return EPHIDGET_OK;
		case PHIDID_SPATIAL_ACCEL_3AXIS:
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}


CSET(Spatial,AnalogDigitalMode,CPhidgetSpatial_AnalogDigitalMode)
	TESTPTR(phid)
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTRANGE(SPATIAL_ANALOG_AND_DIGITAL, SPATIAL_DIGITAL)

	switch(phid->phid.deviceUID)
	{
		case PHIDUID_SPATIAL_ACCEL_3AXIS_1043:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
		{
			if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
			{
				//TODO
			}
			else
			{
				unsigned char buffer[8] = { 0 };
				buffer[0] = SPATIAL_SET_POLLING_TYPE;
				buffer[1] = newVal;
				return CUSBSendPacket((CPhidgetHandle)phid, buffer);
			}
		}
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

PHIDGET21_API int CCONV CPhidgetSpatial_unZeroGyro(CPhidgetSpatialHandle phid)
{
	TESTPTR(phid)
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED

	switch(phid->phid.deviceUID)
	{
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1042:
		case PHIDUID_SPATIAL_ACCEL_GYRO_COMPASS_1044:
		{
			if(CPhidget_statusFlagIsSet(phid->phid.status, PHIDGET_REMOTE_FLAG))
			{
				//TODO
			}
			else
			{
				unsigned char buffer[8] = { 0 };
				buffer[0] = SPATIAL_UNZERO_GYRO;
				return CUSBSendPacket((CPhidgetHandle)phid, buffer);
			}
		}
		default:
			return EPHIDGET_UNSUPPORTED;
	}
}

PHIDGET21_API int CCONV CPhidgetSpatial_setDigitalGyroCalibrationValues(CPhidgetSpatialHandle phid,
	double gainPositive[3], double gainNegative[3], double offset[3], double factor1[3], double factor2[3])
{
	return setCalibrationValues_inFirmware(phid, SPATIAL_GyroCalibTable_ID, SPATIAL_DIGITAL_GYRO_CALIB_TABLE_INDEX,
		gainPositive, gainNegative, offset, factor1, factor2);
}

PHIDGET21_API int CCONV CPhidgetSpatial_setAnalogGyroCalibrationValues(CPhidgetSpatialHandle phid,
	double gainPositive[3], double gainNegative[3], double offset[3], double factor1[3], double factor2[3])
{
	return setCalibrationValues_inFirmware(phid, SPATIAL_GyroCalibTable_ID, SPATIAL_ANALOG_GYRO_CALIB_TABLE_INDEX,
		gainPositive, gainNegative, offset, factor1, factor2);
}

PHIDGET21_API int CCONV CPhidgetSpatial_setDigitalAccelCalibrationValues(CPhidgetSpatialHandle phid,
	double gainPositive[3], double gainNegative[3], double offset[3], double factor1[3], double factor2[3])
{
	return setCalibrationValues_inFirmware(phid, SPATIAL_AccelCalibTable_ID, SPATIAL_DIGITAL_ACCEL_CALIB_TABLE_INDEX,
		gainPositive, gainNegative, offset, factor1, factor2);
}

PHIDGET21_API int CCONV CPhidgetSpatial_setAnalogAccelCalibrationValues(CPhidgetSpatialHandle phid,
	double gainPositive[3], double gainNegative[3], double offset[3], double factor1[3], double factor2[3])
{
	return setCalibrationValues_inFirmware(phid, SPATIAL_AccelCalibTable_ID, SPATIAL_ANALOG_ACCEL_CALIB_TABLE_INDEX,
		gainPositive, gainNegative, offset, factor1, factor2);
}



//Maybe add these later
/*
CGET(Spatial,GyroHeading,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTMASGN(gyroHeading, PUNK_DBL)

	MASGN(gyroHeading)
}

CGET(Spatial,CompassHeading,double)
	TESTPTRS(phid,pVal) 	
	TESTDEVICETYPE(PHIDCLASS_SPATIAL)
	TESTATTACHED
	TESTMASGN(compassHeading, PUNK_DBL)

	MASGN(compassHeading)
}*/